
 CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 488

•
•
•
•
•
•

Beginning

Android Games
Mario Zechner

Get started with game apps development

for the Android platform

iv

Contents at a Glance

Contents .. v

About the Author ... xii

About the Technical Reviewer ... xiii

Acknowledgments .. xiv

Introduction ... xv

■Chapter 1: Android, the New Kid on the Block .. 1

■Chapter 2: First Steps with the Android SDK ... 25

■Chapter 3: Game Development 101 ... 51

■Chapter 4: Android for Game Developers .. 103

■Chapter 5: An Android Game Development Framework 185

■Chapter 6: Mr. Nom Invades Android .. 229

■Chapter 7: OpenGL ES: A Gentle Introduction .. 269

■Chapter 8: 2D Game Programming Tricks ... 351

■Chapter 9: Super Jumper: A 2D OpenGL ES Game 429

■Chapter 10: OpenGL ES: Going 3D .. 489

■Chapter 11: 3D Programming Tricks ... 525

■Chapter 12: Droid Invaders: the Grand Finale ... 577

■Chapter 13: Publishing Your Game .. 625

■Chapter 14: What’s Next? .. 637

Index ... 641

xv

Introduction

Hi there, and welcome to the world of Android game development. My name is Mario; I’ll be your
guide for the next fourteen chapters. You came here to learn about game development on
Android, and I hope to be the person who enables you to realize your ideas.

Together we’ll cover quite a range of materials and topics: Android basics, audio and
graphics programming, a little math and physics, and a scary thing called OpenGL ES. Based on
all this knowledge we’ll develop three different games, one even being 3D.

Game programming can be easy if you know what you’re doing. Therefore I’ve tried to
present the material in a way that not only gives you helpful code snippets to reuse, but actually
shows you the big picture of game development. Understanding the underlying principles is the
key to tackling ever more complex game ideas. You’ll not only be able to write games similar to
the ones developed over the course of this book, but you’ll also be equipped with enough
knowledge to go to the Web or the bookstore and take on new areas of game development on
your own.

A Word About the Target Audience
This book is aimed first and foremost at complete beginners in game programming. You don’t
need any prior knowledge on the subject matter; I’ll walk you through all the basics. However, I
need to assume a little knowledge on your end about Java. If you feel rusty on the matter, I’d
suggest refreshing your memory by reading the online edition of Thinking in Java, by Bruce Eckel
(Prentice Hall, 2006), an excellent introductory text on the programming language. Other than
that, there are no other requirements. No prior exposure to Android or Eclipse is necessary!

This book is also aimed at the intermediate-level game programmer that wants to get her
hands dirty with Android. While some of the material may be old news for you, there are still a lot
of tips and hints contained that should make reading this book worthwhile. Android is a strange
beast at times, and this book should be considered your battle guide.

How This Book Is Organized
This book takes an iterative approach in that we’ll slowly but surely work our way from the
absolute basics to the esoteric heights of hardware-accelerated game programming goodness.
Over the course of the chapters, we’ll build up a reusable code base, so I’d suggest going through
the chapters in sequence. More experienced readers can of course skip certain sections they feel
confident with. Just make sure to read through the code listings of sections you skim over a little,
so you will understand how the classes and interfaces are used in subsequent, more advanced
sections.

 ■ INTRODUCTION

xvi

Getting the Source Code
This book is fully self-contained; all the code necessary to run the examples and games is
included. However, copying the listings from the book to Eclipse is error prone, and games do not
consist of code alone, but also have assets that you can’t easily copy out of the book. Also, the
process of copying code from the book's text to Eclipse can introduce errors. Robert (the book’s
technical reviewer) and I took great care to ensure that all the listings in this book are error free,
but the gremlins are always hard at work.
To make this a smooth ride, I created a Google Code project that offers you the following:

• The complete source code and assets, licensed under the GPL version 3,
available from the project’s Subversion repository.

• A quickstart guide showing you how to import the projects into Eclipse in
textual form, and a video demonstration for the same.

• An issue tracker that allows you to report any errors you find, either in the
book itself or in the code accompanying the book. Once you file an issue in
the issue tracker, I can incorporate any fixes in the Subversion repository.
This way you’ll always have an up-to-date, (hopefully) error-free version of
this book’s code from which other readers can benefit as well.

• A discussion group that is free for everybody to join and discuss the
contents of the book. I’ll be on there as well of course.

For each chapter that contains code, there’s an equivalent Eclipse project in the Subversion
repository. The projects do not depend on each other, as we’ll iteratively improve some of the
framework classes over the course of the book. Each project therefore stands on its own. The code
for both Chapters 5 and 6 is contained in the ch06-mrnom project.

The Google Code project can be found at http://code.google.com/p/beginning-android-
games.

1

1

 Chapter

Android, the New Kid on
the Block

As a kid of the early nineties, I naturally grew up with my trusty Nintendo Game Boy. I

spent countless hours helping Mario rescue the princess, getting the highest score in

Tetris, and racing my friends in RC Pro-Am via link cable. I took this awesome piece of

hardware with me everywhere and every time I could. My passion for games made me

want to create my own worlds and share them with my friends. I started programming

on the PC but soon found out that I couldn’t transfer my little masterpieces to the Game

Boy. I continued being an enthusiastic programmer, but over time my interest in actually

playing video games faded. Also, my Game Boy broke . . .

Fast forward to 2010. Smartphones are becoming the new mobile gaming platforms of

the era, competing with classic dedicated handheld systems such as the Nintendo DS

or the Playstation Portable. That caught my interest again, and I started investigating

which mobile platforms would be suitable for my development needs. Apple’s iOS

seemed like a good candidate to start coding games for. However, I quickly realized that

the system was not open, that I’d be able to share my work with others only if Apple

allowed it, and that I’d need a Mac to develop for the iOS. And then I found Android.

I immediately fell in love with Android. Its development environment works on all the

major platforms, no strings attached. It has a vibrant developer community happy to

help you with any problem you encounter as well as comprehensive documentation. I

can share my games with anyone without having to pay a fee to do so, and if I want to

monetize my work, I can easily publish my latest and greatest innovation to a global

market with millions of users in a matter of minutes.

The only thing I was left with was actually figuring out how to write games for Android

and how to transfer my PC game development knowledge to this new system. In the

following chapters, I want to share my experience with you and get you started with

Android game development. This is of course a rather selfish plan: I want to have more

games to play on the go!

Let’s start by getting to know our new friend: Android.

1

 CHAPTER 1: Android, the New Kid on the Block 2

A Brief History of Android
Android was first publicly noticed in 2005 when Google acquired a small startup called
Android, Inc. This fueled speculation that Google wanted to enter the mobile space. In
2008, the release of version 1.0 of Android put an end to all speculation, and Android
became the new challenger on the mobile market. Since then, it’s been battling it out
with already established platforms such as iOS (then called iPhone OS) and BlackBerry,
and its chances of winning look rather good.

Because Android is open source, handset manufacturers have a low barrier of entry
when using the new platform. They can produce devices for all price segments,
modifying Android itself to accommodate the processing power of a specific device.
Android is therefore not limited to high-end devices but can also be deployed to low-
budget devices, thus reaching a wider audience.

A crucial ingredient for Android’s success was the formation of the Open Handset
Alliance (OHA) in late 2007. The OHA includes companies such as HTC, Qualcomm,
Motorola, and NVIDIA, which collaborate to develop open standards for mobile devices.
Although Android’s core is developed mainly by Google, all the OHA members
contribute to its source in one form or another.

Android itself is a mobile operating system and platform based on the Linux kernel
version 2.6 and is freely available for commercial and noncommercial use. Many
members of the OHA build custom versions of Android for their devices with modified
user interfaces (UIs)—for example, HTC’s HTC Sense and Motorola’s MOTOBLUR. The
open source nature of Android also enables hobbyists to create and distribute their own
versions of Android. These are usually called mods, firmwares, or ROMs. The most
prominent ROM at the time of this writing was developed by a fellow known as
Cyanogen and is aimed at bringing the latest and greatest improvements to all sorts of
Android devices.

Since its release in 2008, Android has received seven version updates, all code-named
after desserts (with the exception of Android 1.1, which is irrelevant nowadays). Each
version has added new functionality to the Android platform that has relevance in one
way or another for game developers. Version 1.5 (Cupcake) added support for including
native libraries in Android applications, which were previously restricted to being written
in pure Java. Native code can be very beneficial in situations where performance is of
upmost concern. Version 1.6 (Donut) introduced support for different screen resolutions.
We will revisit this fact a couple of times in this book because it has some impact on
how we approach writing games for Android. With version 2.0 (Éclair) came support for
multi-touch screens, and version 2.2 (Froyo) added just-in-time (JIT) compilation to the
Dalvik virtual machine (VM), which powers all the Java applications on Android. The JIT
speeds up the execution of Android applications considerably—depending on the
scenario, up to a factor of five. At the time of this writing, the latest version is 2.3, called
Gingerbread. It adds a new concurrent garbage collector to the Dalvik VM. If you haven’t
noticed yet: Android applications are written in Java.

A special version of Android, targeted at tablets, is also being released in 2011. It is
called Honeycomb and represents version 3.0 of Android. Honeycomb is not meant to

 CHAPTER 1: Android, the New Kid on the Block 3

run on phones at this point. However, some features of Honeycomb will be ported to the

main line of Android. At the time of this writing, Android 3.0 is not available to the public,

and no devices on the market are running it. Android 2.3 can be installed on many

devices using custom ROMs. The only handset using Gingerbread is the Nexus S, a

developer phone sold by Google directly.

Fragmentation
The great flexibility of Android comes at a price: companies that opt to develop their

own user interfaces have to play catch-up with the fast pace at which new versions of

Android are released. This can lead to handsets not older than a few months becoming

outdated really fast as carriers and handset manufacturers refuse to create updates that

incorporate the improvements of new Android versions. The big bogeyman called

fragmentation is a result of this process.

Fragmentation has many faces. For the end user, it means being unable to install and

use certain applications and features because of being stuck on an old Android version.

For developers, it means that some care has to be taken when creating applications that

should work on all versions of Android. While applications written for earlier versions of

Android will usually run fine on newer versions, the reverse is not true. Some features

added in newer Android versions are of course not available on older versions, such as

multi-touch support. Developers are thus forced to create separate code paths for

different versions of Android.

But fear not. Although this sounds terrifying, it turns out that the measures that have to

be taken are minimal. Most often, you can even completely forget about the whole issue

and pretend there’s only a single version of Android. As game developers, we’re less

concerned with differences in APIs and more concerned about hardware capabilities.

This is a different form of fragmentation, which is also a problem for platforms such as

iOS, albeit not as pronounced. Throughout this book, I will cover the relevant

fragmentation issues that might get in your way while you develop your next game for

Android.

The Role of Google
Although Android is officially the brainchild of the Open Handset Alliance, Google is the

clear leader when it comes to implementing Android itself as well as providing the

necessary ecosystem for Android to grow.

The Android Open Source Project

Google’s efforts are summarized under the name Android Open Source Project. Most of

the code is licensed under Apache License 2, a very open and nonrestrictive license

compared to other open source licenses such as the GNU General Public License (GPL).

Everyone is free to use this source code to build their own systems. However, systems

that are claimed to be Android compatible first have to pass the Android Compatibility

 CHAPTER 1: Android, the New Kid on the Block 4

Program, a process ensuring baseline compatibility with third-party applications written

by developers like us. Compatible systems are allowed to participate in the Android

ecosystem, which also includes the Android Market.

The Android Market

The Android Market was opened to the public in October 2008 by Google. It’s an online

software store that enables users to find and install third-party applications. The market

is generally accessible only through the market application on a device. This situation

will change in the near future, according to Google, which promises the deployment of a

desktop-based online store accessible via the browser.

The market allows third-party developers to publish their applications either for free or

as paid applications. Paid applications are available for purchase in only about 30

countries. Selling applications as a developer is possible in a slightly smaller number.

Table 1–1 shows you the countries in which apps can be bought and sold.

Table 1–1. Purchase and Selling Options per Country.

Country User Can Purchase Apps Developer Can Sell Apps

Australia Yes Yes

Austria Yes Yes

Belgium Yes Yes

Brazil Yes Yes

Canada Yes Yes

Czech Republic Yes No

Denmark Yes Yes

Finland Yes Yes

France Yes Yes

Germany Yes Yes

Hong Kong Yes Yes

Hungary Yes Yes

India Yes Yes

Ireland Yes Yes

 CHAPTER 1: Android, the New Kid on the Block 5

Country User Can Purchase Apps Developer Can Sell Apps

Israel Yes Yes

Italy Yes Yes

Japan Yes Yes

Mexico Yes Yes

Netherlands Yes Yes

New Zealand Yes Yes

Norway Yes Yes

Pakistan Yes No

Poland Yes No

Portugal Yes Yes

Russia Yes Yes

Singapore Yes Yes

South Korea Yes Yes

Spain Yes Yes

Sweden Yes Yes

Switzerland Yes Yes

Taiwan Yes Yes

United Kingdom Yes Yes

United States Yes Yes

Users get access to the market after setting up a Google account. Applications can be
bought only via credit card at the moment. Buyers can decide to return an application
within 15 minutes from the time of purchasing it and will receive a full refund. Previously,
the refund time window was 24 hours. The recent change to 15 minutes has not been
well received by end users.

Developers need to register an Android Developer account with Google for a one-time
fee of $25 in order to be able to publish applications on the market. After successful

 CHAPTER 1: Android, the New Kid on the Block 6

registration, a developer can immediately start to publish a new application in a matter

of minutes.

The Android Market has no approval process but relies on a permission system. A user

is presented with a set of permissions needed by an application before the installation of

the program. These permissions handle access to phone services, networking access,

access to the Secure Digital (SD) card, and so on. Only after a user has approved these

permissions is the application installed. The system relies on the user doing the right

thing. On the PC, especially on Windows systems, this concept didn’t work out too well.

On Android, it seems to have worked so far; only a few of applications have been pulled

from the market because of malicious behavior.

To sell applications, a developer has to additionally register a Google Checkout

Merchant Account, which is free of charge. All financial business is handled through this

account.

Challenges, Device Seeding, and Google I/O

In an ongoing effort to draw more developers to the Android platform, Google started to

hold challenges. The first challenge, called the Android Developer Challenge (ADC) was

launched in 2008, offering relatively high cash prices for the winning projects. The ADC

was carried out in the subsequent year and was again a huge success in terms of

developer participation. There was no ADC in 2010, which can probably be attributed to

Android now having a considerable developer base and thus not needing any further

actions to get new developers on board.

Google also started a device-seeding program in early 2010. Each developer who had

one or more applications on the market with more than 5,000 downloads and an

average user rating of 3.5 stars or above received a brand new Motorola Droid, Motorola

Milestone, or Nexus One phone. This was a very well-received action within the

developer community, although it was initially met with disbelief. Many considered the e-

mail notifications that came out of the blue to be an elaborate hoax. Fortunately, the

promotion turned out to be a reality, and thousands of devices were sent to developers

across the planet—a great move by Google to keep its third-party developers happy and

make them stick with the platform and to potentially attract new developers.

Google also provides the special Android Dev Phone (ADP) for developers. The first ADP

was a version of the T-Mobile G1 (also known as HTC Dream). The next iteration, called

ADP 2, was a variation of the HTC Magic. Google also released its own phone in the

form of the Nexus One, available to end users. Although initially not released as an ADP,

it was considered by many as the successor to the ADP 2. Google eventually stopped

selling the Nexus One to end users, and it is now available for shipment only to partners

and developers. At the end of 2010, the latest ADP was released; this Samsung device

running Android 2.3 (Gingerbread) is called the Nexus S. ADPs can be bought via the

Android Market, which requires you to have a developer account. The Nexus S can be

bought via a separate Google site at www.google.com/phone.

 CHAPTER 1: Android, the New Kid on the Block 8

Figure 1–1. Android architecture overview

The Kernel

Starting from the bottom of the stack, you can see that the Linux kernel provides the

basic drivers for the hardware components. Additionally, the kernel is responsible for

such mundane things as memory and process management, networking, and so on.

The Runtime and Dalvik

The Android runtime is built on top of the kernel and is responsible for spawning and

running Android applications. Each Android application is run in its own process with its

own Dalvik virtual machine.

Dalvik runs programs in the DEX bytecode format. Usually you transform common Java

.class files to the DEX format via a special tool called dx that is provided by the

software development kit. The DEX format is designed to have a smaller memory

footprint compared to classic Java .class files. This is achieved by heavy compression,

tables, and merging of multiple .class files.

The Dalvik virtual machine interfaces with the core libraries, which provide the basic

functionality exposed to Java programs. The core libraries provide some but not all of

 CHAPTER 1: Android, the New Kid on the Block 9

the classes available in Java SE through the use of a subset of the Apache Harmony

Java implementation. This also means that there’s no Swing or Abstract Window Toolkit

(AWT) available, nor any classes that can be found in Java ME. However, with some

care, you can still use many of the third-party libraries available for Java SE on Dalvik.

Before Android 2.2 (Froyo), all bytecode was interpreted. Froyo introduces a tracing JIT

compiler, which compiles parts of the bytecode to machine code on the fly. This

increases the performance of computationally intensive applications considerably. The

JIT compiler can use CPU features specifically tailored for special computations such as

a dedicated Floating Point Unit (FPU).

Dalvik also has an integrated garbage collector (GC). It’s a mark-and-sweep

nongenerational GC that has the tendency to drive developers a tad bit mad at times.

With some attention to details, you can peacefully coexist with the GC in your day-to-

day game development, though. The latest Android release (2.3) has an improved

concurrent GC, which relieves some of the pain. We’ll investigate GC issues in more

detail later in the book.

Each application running in an instance of the Dalvik VM has a total of 16MB to 24MB of

heap memory available. We’ll have to keep that in mind as we juggle our image and

audio resources.

System Libraries

Besides the core libraries, which provide some Java SE functionality, there’s also a set

of native C/C++ libraries that build the basis for the application framework (located in the

next layer of Figure 1–1). These system libraries are mostly responsible for the

computationally heavy tasks such as graphics rendering, audio playback, and database

access, which would not be so well suited for the Dalvik virtual machine. The APIs are

wrapped via Java classes in the application framework, which we’ll exploit when we

start writing our games. We’ll abuse the following libraries in one form or another:

Skia Graphics Library (Skia): This software renderer for 2D graphics is

used for rendering the UI of Android applications. We’ll use it to draw

our first 2D game.

OpenGL for Embedded Systems (OpenGL ES): This is the industry

standard for hardware-accelerated graphics rendering. OpenGL ES 1.0

and 1.1 are exposed in Java on all versions of Android. OpenGL ES 2.0,

which brings shaders to the table, is supported from only Android 2.2

(Froyo) onward. It should be mentioned that the Java bindings for

OpenGL ES 2.0 are incomplete and lack a few vital methods. Also, the

emulator and most of the older devices that still make up a considerable

share of the market do not support OpenGL ES 2.0. We’ll be concerned

with OpenGL ES 1.0 and 1.1, to stay compatible as much as possible.

 CHAPTER 1: Android, the New Kid on the Block 10

OpenCore: This is a media playback and recording library for audio and

video. It supports a good mix of formats such as Ogg Vorbis, MP3,

H.264, MPEG-4 and so on. We’ll be mostly concerned with the audio

portion, which is not directly exposed to the Java side but wrapped in a

couple of classes and services.

FreeType: This is a library to load and render bitmap and vector fonts,

most notably the TrueType format. FreeType supports the Unicode

standard, including right-to-left glyph rendering for Arabic and similar

peculiarities. Sadly, this is not entirely true for the Java side, which to

this point does not support Arabic typography. As with OpenCore,

FreeType is not directly exposed to the Java side but is wrapped in a

couple of convenient classes.

These system libraries cover a lot of ground for game developers and perform most of

the heavy lifting for us. They are the reason why we can write our games in plain old

Java.

Note: Although the capabilities of Dalvik are usually more than sufficient for our purposes, at

times you might need more performance. This can be the case for very complex physics

simulations or heavy 3D calculations—for which we would usually resort to writing native code. I

do not cover this aspect in this book. A couple of open source libraries for Android already exist

that can help you stay on the Java side of things. See http://code.google.com/p/libgdx/

for an example. Also worth noting is the excellent book Pro Android Games by Vladimir Silva

(Apress, 2009), which goes into depth about interfacing with native code in the context of game

programming.

The Application Framework

The application framework ties together the system libraries and the runtime, creating

the user side of Android. The framework manages applications and provides an

elaborate framework within which applications operate. Developers create applications

for this framework via a set of Java APIs that cover such areas as UI programming,

background services, notifications, resource management, peripheral access, and so

on. All core applications provided out of the box by Android, such as the mail client, are

written with these APIs.

Applications, whether they are UIs or background services, can communicate their

capabilities to other applications. This communication enables an application to reuse

components of other applications. A simple example is an application that needs to take

a photo and then perform some operations on it. The application queries the system for

a component of another application that provides this service. The first application can

then reuse the component (for example, a built-in camera application or photo gallery).

This significantly lowers the burden on programmers and also enables you to customize

a plethora of aspects of Android’s behavior.

 CHAPTER 1: Android, the New Kid on the Block 11

As game developers, we will create UI applications within this framework. As such, we

will be interested in an application’s architecture and life cycle as well as its interactions

with the user. Background services usually play a small role in game development,

which is why I will not go into details about them.

The Software Development Kit
To develop applications for Android, we will use the Android software development kit

(SDK). The SDK is composed of a comprehensive set of tools, documentation, tutorials,

and samples that will help you get started in no time. Also included are the Java libraries

needed to create applications for Android. These contain the APIs of the application

framework. All major desktop operating systems are supported as development

environments.

Prominent features of the SDK are as follows:

 The debugger, capable of debugging applications running on a device

or in the emulator

 A memory and performance profile to help you find memory leaks and

identify slow code

 The device emulator, based on QEMU (an open source virtual machine

to simulate different hardware platforms), which, although accurate,

can be a bit slow at times

 Command-line utilities to communicate with devices

 Build scripts and tools to package and deploy applications

The SDK can be integrated with Eclipse, a popular and feature-rich open source Java

integrated development environment (IDE). The integration is achieved through the

Android Development Tools (ADT) plug-in, which adds a set of new capabilities to

Eclipse to create Android projects; to execute, profile and debug applications in the

emulator or on a device; and to package Android applications for their deployment to

the Android Market. Note that the SDK can also be integrated into other IDEs such as

NetBeans. There is, however, no official support for this.

NOTE: Chapter 2 covers how to set up the development environment with the SDK and Eclipse.

The SDK and the ADT plug-in for Eclipse receive constant updates that add new

features and capabilities. It’s therefore a good idea to keep them updated.

Alongside any good SDK comes extensive documentation. Android’s SDK does not fall

short in this area and comes with a lot of sample applications. You can also find a

developer guide and a full API reference for all the modules of the application framework

at http://developer.android.com/guide/index.html.

 CHAPTER 1: Android, the New Kid on the Block 12

The Developer Community
Part of the success of Android is its developer community, which gathers in various

places around the Web. The most frequented site for developer exchange is the Android

Developers group at http://groups.google.com/group/android-developers. This is the

number one place to ask questions or seek help when you stumble across a seemingly

unsolvable problem. The group is visited by all sorts of Android developers, from system

programmers, to application developers, to game programmers. Occasionally, the

Google engineers responsible for parts of Android also help out with valuable insights.

Registration is free, and I highly recommend starting reading the group now! Apart from

providing a place for you to ask questions, it’s also a great place to search for already

answered questions and solutions to problems. So, before asking a question, check

whether it has been answered already.

Every developer community worth its salt has a mascot. Linux has Tux the penguin,

GNU has its, well, gnu, and Mozilla Firefox has its trendy Web 2.0 fox. Android is no

different and has selected a little green robot as its mascot of choice. Figure 1–2 shows

you that little devil.

Figure 1–2. Android’s nameless mascot

Although its choice of color may be disputable, this nameless little robot already starred

in a couple of popular Android games. Its most notable appearance was in Replica

Island, a free and open source platfom created by Google engineer Chris Pruett as a 20

percent project.

Devices, Devices, Devices!
Android is not locked into a single hardware ecosystem. Many prominent handset

manufacturers such asHTC, Motorola, and Samsung have jumped onto the Android

 CHAPTER 1: Android, the New Kid on the Block 13

wagon and offer a wide range of devices running Android. Besides handsets, there’s

also a slew of tablet devices coming to the market that build upon Android. Some key

concepts are shared by all devices, though, which makes our lives as game developers

a little easier.

Hardware

There are no hard minimum requirements for an Android device. However, Google has

recommended the following hardware specifications, which virtually all available Android

devices fulfill and most often surpass significantly:

ARM-based CPU: At the time of writing this book, this requirement was

relaxed. Android now also runs on the x86 architecture. The latest ARM-

based devices are also starting to feature dual-core CPUs.

128MB RAM: This specification is a minimum. Current high-end devices

already include 512MB RAM, and 1GB RAM devices are expected in the

very near future.

256MB flash memory: This minimum amount of memory is for storing

the system image and applications. For a long time, this lack of memory

was the biggest gripe among Android users because third-party

applications could be installed only to flash memory. This changed with

the release of Froyo.

Mini or Micro SD card storage: Most devices come with a few gigabytes

of SD card storage, which can be replaced with bigger SD cards by the

user.

16-bit color Half-Size Video Graphics Array (HVGA) TFT LCD with touch

screen: Before Android version 1.6, only HVGA screens (480 320 pixels)

were supported by the operating system. Since version 1.6, lower- and

higher-resolution screens are supported. The current high-end devices

have Wide Video Graphis Array (WVGA) screens (800 480, 848 480, or

852 480 pixels), and some low-end devices sport Quarter-Size Video

Graphics Array (QVGA) (320 280 pixels) screens. Touch screens are

almost always capacitive and are only single-touch capable on most

older devices.

Dedicated hardware keys: These keys are used for navigation. Most

phones to date have at least a menu, search, home, and a back key.

Some manufacturers have started to deviate from this and are including

a subset of these keys or no keys at all.

Of course, there’s a lot more hardware in actual Android devices. Almost all handsets

have GPS, an accelerometer, and a compass. Many also feature proximity and light

sensors. These peripherals offer game developers new ways to let the user interact –

with the game, and we’ll have a look at some of them later on. A few devices have a full

QWERTY keyboard as well as a trackball. The latter is most often found in HTC devices.

 CHAPTER 1: Android, the New Kid on the Block 14

Cameras are also available on almost all current devices. Some handsets and tablets

have two cameras, one on the back and one on the front for video chat.

Especially crucial for game development are dedicated graphics processor units (GPUs).

The earliest handset to run Android already had an OpenGL ES 1.0compliant GPU.

More-modern devices have GPUs comparable in performance to the Xbox or

PlayStation 2 and support OpenGL ES 2.0. If no graphics processor is available, a

fallback in the form of a software renderer called PixelFlinger is provided by the platform.

Many low-budget handsets rely on the software renderer, which is often sufficiently fast

for low-resolution screens.

Along with the graphics processor, any currently available Android device also has

dedicated audio hardware. Many hardware platforms also have special circuitry to

decode different media formats such as H.264 in hardware. Connectivity is provided via

hardware components for mobile telephony, Wi-Fi, and Bluetooth. All these hardware

modules of an Android device are most often integrated in a single system on a chip

(SoC), a system design also found in embedded hardware.

First Gen, Second Gen, Next Gen

Given the differences in capabilities, especially in terms of performance, Android

developers usually group devices into first-, second-, and next-generation devices. This

terminology comes up a lot, even more so when it comes to game development for

Android. Let’s try to define these terms.

Each generation has a specific set of characteristics, mostly a combination of the

Android version(s) used, the CPU/GPU, and the screen resolution of the devices within a

generation. Although the hardware specifications are static, this might not be the case

for the Android version used on a device.

In the Beginning: First Generation

First-generation devices are the current baseline and are best described by examining

one of their most prominent specimens, the HTC Hero, shown in Figure 1–3.

 CHAPTER 1: Android, the New Kid on the Block 15

Figure 1–3. The HTC Hero

This was one of the first Android phones that was said to be an iPhone killer, released in

October 2009. The Hero was first shipped with Android version 1.5 installed, which was

the standard for most Android handsets for most of 2009. The last official update for the

Hero was to Android version 2.1. Newer updates can be installed only if the phone is

rooted, a process that grants full system access.

The Hero has a 3.2-inch HVGA capacitive LCD touch screen, a 528MHz Qualcomm

MSM7201A CPU/GPU combination, an accelerometer, and a compass, as well as a 5-

megapixel camera. It also has the typical set of navigational hardware keys that most

first-generation devices exhibit, along with a trackball.

The Hero is a prime example of first-generation devices. The touch screen has only

limited support for multi-touch gestures such as the pinch zoom and no true multi-touch

capability. Note that multi-touch gestures are not officially supported by the device and

are also not exposed through the APIs of the official Android version 1.5. In this regard,

the Hero was a major diasppointment for game developers who had hoped for similar

multi-touch capabilities as those found on the iPhone.

Another common trait of first-generation devices is the screen resolution of 480 320

pixels, the standard resolution up until Android version 1.6.

In the CPU/GPU department, the Hero employs the very common MSM7201A series by

Qualcomm. This chip does not support hardware floating-point operations, another

feature of high importance to game developers. The MSM7201A is OpenGL ES 1.0

compliant, which translates to a fixed-function pipeline as opposed to a programmable,

 CHAPTER 1: Android, the New Kid on the Block 16

shader-based pipeline. The GPU is reasonably fast but outperformed by the PowerVR

MBX Lite chip found in the iPhone 3G, which was available at the same time. HTC used

the same chip in a couple of other first-generation handsets, such as the famous HTC

Dream (T-Mobile G1). The MSM7201A is considered the low end when it comes to

hardware-accelerated 3D graphics and is thus your greatest enemy when you want to

target all generations of Android devices.

First-generation devices can thus be identified by the following features:

 A CPU running at up to ~500MHz without hardware floating-point support

 A GPU, mostly in the form of the MSM7201A chip, supporting OpenGL ES 1.x

 A screen resolution of 480 320 pixels

 Limited multi-touch support

 Initially deployed with Android 1.5/1.6 or even earlier versions

This classification is of course not strict. Many low-budget devices just coming out

share a similar feature set. Although they are not exactly first generation, we can still put

them in the same category as the Hero and similar devices.

First-generation devices still have a considerable market share at the time of writing this

book. If we want to reach the biggest possible audience, we have to consider their

limitations and adapt our games accordingly.

More Power: Second Generation

At the end of 2009, a new generation of Android devices entered the scene.

Spearheaded by the Motorola Droid and Nexus One (released in January 2010), this new

generation of handsets demonstrated raw computational power previously unseen in

mobile phones.

The Nexus One is powered by a 1GHz Qualcomm QSD8250, a member of the

Snapdragon family of chips. The Motorola Droid uses a 550MHz Texas Instruments

OMAP3430. Both CPUs support vector hardware floating-point operations via the

Vector Floating Point (VFP) and NEON ARM extensions. The Nexus One has 512MB

RAM, and the Motorola Droid has 256MB RAM. Figure 1–4 shows their designs.

 CHAPTER 1: Android, the New Kid on the Block 18

Note that a few first-generation devices received updates to Android version 2.1, which

has some positive impact on overall system performance but does not, of course,

change the fact that their hardware specifications are inferior to second-generation

devices. The distinction between first- and second-generation devices can thus be

made only if all factors such as CPU, GPU, or screen resolution are taken into account.

Over the course of 2010, many more second-generation devices appeared, such as the

HTC Evo or the Samsung i9200 Galaxy S. Although they feature some improvements

over the Nexus One and Motorola Droid such as bigger screens and slightly faster

CPUs/GPUs, they are still considered second-generation devices.

The Future: Next Generation

Device manufacturers try to keep their latest and greatest handsets a secret for as long

as possible, but there are always some leaks of specifications.

General trends for all future devices are dual-core CPUs, more RAM, better GPUs, and

higher screen resolutions. One such future device is the Samsung i9200 Galaxy S2,

which is rumored to have a 1280 720 pixel AMOLED 2 display, a 2GHz dual-core CPU,

and 1GB RAM. Not much is known about the GPU this handset will use. A possible

candidate would be the new NVIDIA Tegra 2 family of chips, which promises a

significant boost in graphics performance. The next generation is also expected to ship

with the latest Android version (2.3).

Although mobile phones will probably remain the focus of Android for the immediate

future, new form factors will also play a role in Android’s evolution. Hardware

manufacturers are creating tablet devices and netbooks, using Android as the operating

system. Ports of Android for other architectures such as x86 are also already in the

making, increasing the number of potential target platforms. And with Android 3.0,

there’s even a dedicated Android version for tablets available.

Whatever the future will bring, Android is here to stay!

Game Controllers

Given the differences of input methods available on various Android handsets, a few

manufacturers produce special game controllers. Because there’s no API in Android for

such controllers, game developers have to integrate support separately by using the

SDK provided by the game controller manufacturer.

One such game controller is called the Zeemote JS1, shown in Figure 1–5. It features an

analog stick as well as a set of buttons.

 CHAPTER 1: Android, the New Kid on the Block 19

Figure 1–5. The Zeemote JS1 controller

The controller is coupled with the device via Bluetooth. Game developers integrate

support for the controller via a separate API provided by the Zeemote SDK. A couple of

Android games already support this controller when available.

Users could in theory also couple the Nintendo Wii controller with their device via

Bluetooth. A couple of prototypes exploiting the Wii controller exist, but there’s no

officially supported SDK—which makes integration a tad bit awkward.

The Game Gripper, shown in Figure 1–6, is an ingenious invention specifically designed

for the Motorola Droid and Milestone. It is a simple rubber accessory that slides over the

QWERTY keyboard of the phone and overlays a more or less standard game controller

layout on top of the actual hardware keyboard. Game developers need only add

keyboard controls to their game and don’t have to integrate a special library to

communicate with the Gripper. It’s just a piece of rubber, after all.

sample content of Beginning Android Games

The Spivak Reader: Selected Works of Gayati Chakravorty Spivak for free
click Cell pdf
read online Star Trek: Creative Couplings Book 2 (Star Trek: Corp of Engineers, Book 48)
The Panchatantra pdf
download A History of the World in Numbers
The Choosing (Blood and Brotherhood Saga, Book 1) for free

http://korplast.gr/lib/Darkfever--Fever--Book-1-.pdf
http://www.1973vision.com/?library/The-Satires-of-Horace-and-Persius.pdf
http://xn--d1aboelcb1f.xn--p1ai/lib/Women-of-the-Vine--Inside-the-World-of-Women-Who-
Make--Taste--and-Enjoy-Wine.pdf
http://betsy.wesleychapelcomputerrepair.com/library/The-Panchatantra.pdf
http://conexdxb.com/library/Real-Snacks--Make-Your-Favorite-Childhood-Treats-Without-All-
the-Junk.pdf
http://rodrigocaporal.com/library/Eat-Bacon--Don-t-Jog--Get-Strong--Get-Lean--No-
Bullshit-.pdf

Powered by TCPDF (www.tcpdf.org)

http://korplast.gr/lib/Darkfever--Fever--Book-1-.pdf
http://www.1973vision.com/?library/The-Satires-of-Horace-and-Persius.pdf
http://xn--d1aboelcb1f.xn--p1ai/lib/Women-of-the-Vine--Inside-the-World-of-Women-Who-Make--Taste--and-Enjoy-Wine.pdf
http://betsy.wesleychapelcomputerrepair.com/library/The-Panchatantra.pdf
http://conexdxb.com/library/Real-Snacks--Make-Your-Favorite-Childhood-Treats-Without-All-the-Junk.pdf
http://rodrigocaporal.com/library/Eat-Bacon--Don-t-Jog--Get-Strong--Get-Lean--No-Bullshit-.pdf
http://korplast.gr/lib/Darkfever--Fever--Book-1-.pdf
http://www.1973vision.com/?library/The-Satires-of-Horace-and-Persius.pdf
http://xn--d1aboelcb1f.xn--p1ai/lib/Women-of-the-Vine--Inside-the-World-of-Women-Who-Make--Taste--and-Enjoy-Wine.pdf
http://xn--d1aboelcb1f.xn--p1ai/lib/Women-of-the-Vine--Inside-the-World-of-Women-Who-Make--Taste--and-Enjoy-Wine.pdf
http://betsy.wesleychapelcomputerrepair.com/library/The-Panchatantra.pdf
http://conexdxb.com/library/Real-Snacks--Make-Your-Favorite-Childhood-Treats-Without-All-the-Junk.pdf
http://conexdxb.com/library/Real-Snacks--Make-Your-Favorite-Childhood-Treats-Without-All-the-Junk.pdf
http://rodrigocaporal.com/library/Eat-Bacon--Don-t-Jog--Get-Strong--Get-Lean--No-Bullshit-.pdf
http://rodrigocaporal.com/library/Eat-Bacon--Don-t-Jog--Get-Strong--Get-Lean--No-Bullshit-.pdf
http://www.tcpdf.org

