

Table of Contents

Also by Neil Gershenfeld
Title Page
Dedication

How to Make . . .

. . . Almost Anything
Kelly
Meejin
Shelly
Dalia

The Past

Hard Ware

The Present

Birds and Bikes
Irene
Saul
Alan
Grace and Eli

Subtraction
Growing Inventors

Mel
Nana Kyei
Anil

Addition
Building Models

Frank
Larry

Etienne

Description
Playing at Work

Seymour
David
Ken
Amy

Computation
Making Sense

Kalbag
Instrumentation
Net Work

Sharp
Haakon
Vicente

Communication
Art and Artillery

Terry
Sugata
Arjun

Interaction

The Future

Joy

The Details

The Past
Hardware
Subtraction
Addition
Building Models
Description
Computation
Instrumentation
Communication
Interaction
The Future
Joy

Index
Copyright Page

Also by Neil Gershenfeld

When Things Start to Think

The Nature of Mathematical Modeling

The Physics of Information Technology

For Kalbag

and

Kelly, Meejin, Dalia, Irene, Saul, Alan, Grace,

Eli, Mel, Kyei, Anil, Frank, Larry, Etienne, Seymour,
David, Kenny, Amy, Haakon, Vicente, Terry,

Sugata, Arjun

and

Lass, Susan, John, Bakhtiar, Amon, Joe, Aisha,

Chris, Caroline, Manu, Sanjay, Debu,
Jørgen, Benn, Milton, Joe, Ike, Scott, Seth,

Alex, Mitch, Marvin

How to Make . . .

Mainframe computers were expensive machines with limited markets, used by skilled operators
working in specialized rooms to perform repetitive industrial operations. We can laugh in retrospect at
the small size of the early sales forecasts for computers; when the packaging of computation made it
accessible to ordinary people in the form of personal computers, the result was a unprecedented
outpouring of new ways to work and play.

However, the machines that make computers (and most everything else) remain expensive tools
with limited markets, used by skilled operators working in specialized rooms to perform repetitive
industrial operations. Like the earlier transition from mainframes to PCs, the capabilities of machine
tools will become accessible to ordinary people in the form of personal fabricators (PFs). This time
around, though, the implications are likely to be even greater because what’s being personalized is our
physical world of atoms rather than the computer’s digital world of bits.

A PF is a machine that makes machines; it’s like a printer that can print things rather than images.
By personal fabrication, I mean not only the creation of three-dimensional structures but also the
integration of logic, sensing, actuation, and display—everything that’s needed to make a complete
functioning system. With a PF, instead of shopping for and ordering a product, you could download or
develop its description, supplying the fabricator with designs and raw materials.

Programmable personal fabricators are not just a prediction, they’re a reality. The world of
tomorrow can be glimpsed in tools available today. Fab tells the stories of these remarkable tools and
their equally remarkable users around the world. It explains what can be made, and why, and how.

I first encountered the possibility of personal fabrication through the unexpectedly enthusiastic
student response to a class that I teach at MIT, modestly titled “How To Make (almost) Anything.” At
MIT I direct the Center for Bits and Atoms. CBA comprises fifteen or so faculty from across campus:
physicists, chemists, biologists, mathematicians, and mechanical and electrical engineers. They all,
like me, never fit into the artificial separation of computer science from physical science.

The universe is literally as well as metaphorically a computer. Atoms, molecules, bacteria, and
billiard balls can all store and transform information. Using the discrete language of computation
rather than the continuous equations of calculus to describe the behavior of physical systems is not
only leading to the practical development of new and more powerful kinds of information
technologies, such as quantum computers, it’s also leading to new kinds of insights into the nature of
the universe itself, such as the long-term behavior of black holes. If the world is a computer, then the
science of computing is really the science of science.

At the intersection of physical science and computer science, programs can process atoms as well as
bits, digitizing fabrication in the same way that communications and computation were earlier
digitized. Ultimately, this means that a programmable personal fabricator will be able to make
anything, including itself, by assembling atoms. It will be a self-reproducing machine. That idea has
been a long-standing science fiction staple for better or, sometimes, much worse.

I n Star Trek: The Next Generation , the replicator is an essential plot element that is capable of
making whatever is needed for each episode. It looks like an overgrown drinks dispenser, but it has the
useful feature of being able to dispense anything. In theory, it does this by following stored
instructions to put together subatomic particles to make atoms, atoms to make molecules, and

molecules to make whatever you want. For Captain Picard, that was frequently a steaming mug of his
preferred tea, obtained from the replicator with the command “Tea, Earl Grey, hot.”

The less fortunate Arthur Ford in the Hitchhiker’s Guide to the Galaxy had to contend with the
infamous Nutri-Matic machine to obtain his cup of tea. Rather than storing the molecular
specification in advance, the Nutri-Matic attempted to personalize Arthur’s beverage by performing a
spectroscopic analysis of his metabolism, and then probing the taste centers in his brain. As with
Captain Picard’s tea, Arthur’s drink is synthesized by assembling its molecular constituents. However,
in the Nutri-Matic’s case the inevitable result was a plastic cup filled with a liquid that was almost,
but not quite, entirely unlike tea.

None of this violates any physical laws, and in fact such atomic-scale programmable assembly is
already possible in the lab today (as long as your tastes don’t run to anything much larger than a few
atoms).

To develop real working personal fabricators that can operate on a larger scale, my colleagues at
MIT and I assembled an array of machines to make the machines that make machines. These tools
used supersonic jets of water, or powerful lasers, or microscopic beams of atoms to make—well,
almost anything. The problem we quickly ran into was that it would take a lifetime of classes for
students to master all of the tools, and even then the students would get little practical experience in
combining these tools to create complete working systems. So, we thought, why not offer a single-
semester course that would provide a hands-on introduction to all the machines?

In 1998 we tried teaching “How To Make (almost) Anything” for the first time. The course was
aimed at the small group of advanced students who would be using these tools in their research.
Imagine our surprise, then, when a hundred or so students showed up for a class that could hold only
ten. They weren’t the ones we expected, either; there were as many artists and architects as engineers.
And student after student said something along the lines of “All my life I’ve been waiting to take a
class like this,” or “I’ll do anything to get into this class.” Then they’d quietly ask, “This seems to be
too useful for a place like MIT—are you really allowed to teach it here?”

Students don’t usually behave that way. Something had to be wrong with this class, or with all the
other classes I taught. I began to suspect the latter.

The overwhelming interest from students with relatively little technical experience (for MIT) was
only the first surprise. The next was the reason why they wanted to take the class. Virtually no one was
doing this for research. Instead, they were motivated by the desire to make things they’d always
wanted, but that didn’t exist. These ranged from practical (an alarm clock that needs to be wrestled
into turning off), to fanciful (a Web browser for parrots), to profoundly quirky (a portable personal
space for screaming). Their inspiration wasn’t professional; it was personal. The goal was not to
publish a paper, or file a patent, or market a product. Rather, their motivation was their own pleasure
in making and using their inventions.

The third surprise was what these students managed to accomplish. Starting out with skills more
suited to arts and crafts than advanced engineering, they routinely and single-handedly managed to
design and build complete functioning systems. Doing this entailed creating both the physical form—
mastering the use of computer-controlled tools that produce three-dimensional shapes by adding or
removing material—and the logical function—designing and building circuits containing embedded
computer chips interfaced with input and output devices. In an industrial setting these tasks are
distributed over whole teams of people who conceive, design, and produce a product. No one member
of such a team could do all of this, and even if they could, they wouldn’t: personal screaming
technology is unlikely to emerge as a product plan from a marketing meeting (even if the participants

might secretly long for it).

The final surprise was how these students learned to do what they did: the class turned out to be
something of an intellectual pyramid scheme. Just as a typical working engineer would not have the
design and manufacturing skills to personally produce one of these projects, no single curriculum or
teacher could cover the needs of such a heterogeneous group of people and machines. Instead, the
learning process was driven by the demand for, rather than supply of, knowledge. Once students
mastered a new capability, such as waterjet cutting or microcontroller programming, they had a near-
evangelical interest in showing others how to use it. As students needed new skills for their projects
they would learn them from their peers and then in turn pass them on. Along the way, they would
leave behind extensive tutorial material that they assembled as they worked. This phase might last a
month or so, after which they were so busy using the tools that they couldn’t be bothered to document
anything, but by then others had taken their place. This process can be thought of as a “just-in-time”
educational model, teaching on demand, rather than the more traditional “just-incase” model that
covers a curriculum fixed in advance in the hopes that it will include something that will later be
useful.

These surprises have recurred with such certainty year after year that I began to realize that these
students were doing much more than taking a class; they were inventing a new physical notion of
literacy. The common understanding of “literacy” has narrowed down to reading and writing, but
when the term emerged in the Renaissance it had a much broader meaning as a mastery of the
available means of expression. However, physical fabrication was thrown out as an “illiberal art,”
pursued for mere commercial gain. These students were correcting a historical error, using millions of
dollars’ worth of machinery for technological expression every bit as eloquent as a sonnet or a
painting.

Today there aren’t many places where these kinds of tools are available for play rather than work,
but their capabilities will be integrated into accessible and affordable consumer versions. Such a
future really represents a return to our industrial roots, before art was separated from artisans, when
production was done for individuals rather than masses. Life without the infrastructure we take for
granted today required invention as a matter of survival rather than as a specialized profession. The
design, production, and use of engineered artifacts—agricultural implements, housewares, weapons,
and armor—all took place locally. The purpose of bringing tool-making back into the home is not to
recreate the hardships of frontier living, just as it’s not to run personalscream-container production
lines out of the family room. Rather, it’s to put control of the creation of technology back in the hands
of its users.

The analogy between the personalization of fabrication and computation is close, and instructive.
Remember that mainframes were behemoths; in 1949 Popular Mechanics famously forecast that
“Computers in the future may weigh no more than 1.5 tons.” The Digital Equipment Corporation
(DEC) pioneered computers that were the size of desks rather than rooms. They called these
“Programmed Data Processors” (PDPs) rather than computers because the market for computers was
seen as being too small to be viable. But over time this class of devices came to be called
minicomputers. A 1964 DEC ad proudly proclaimed, “Now you can own the PDP-5 computer for what
a core memory alone used to cost: $27,000.” That’s a lot more than a PC costs today, but a lot less
than the price of a mainframe. Minicomputers were thus accessible to small groups of users rather
than just large corporations, and consequently their uses migrated from meeting the needs of
corporations to satisfying individuals. PDPs did eventually shrink down so that they could fit on a
desk, but they didn’t end up there, because the engineers developing them didn’t see why

nonengineers would want them. DEC’s president, Ken Olsen, said in 1977 that “there is no reason for
any individual to have a computer in their home.” PCs are now in the home; DEC is now defunct.

The adoption of PCs was driven by “killer apps,” applications that were so compelling they
motivated people to buy the systems to run them. The classic killer app was the original spreadsheet,
VisiCalc, which in 1979 turned the Apple II from a hobbyist’s toy to a serious business tool, and
helped propel IBM into the PC business. VisiCalc’s successor, Lotus 1-2-3, did the same in 1983 for
IBM’s PCs. The machine tools that the students taking “How To Make (almost) Anything” use today
are much like mainframes, filling rooms and costing hundreds of thousands of dollars. But despite
their size and expense, they’ve been adequate to show, year in and year out, that the killer app for
personal fabrication is fulfilling individual desires rather than merely meeting mass-market needs. For
one student this meant putting a parrot online; for another an alarm clock that got her up in the
morning. None of the students needed to convince anyone else of the value of their ideas; they just
created them themselves.

The invention that made PCs possible was integrated circuits, leading up to the development of
microprocessors that put the heart of a computer onto a single silicon chip. The invention that
promises to put the capabilities of a roomful of machine tools onto a desktop is the printing of
functional materials. A printer’s ink-jet cartridge contains reservoirs of cyan, magenta, yellow, and
black inks; by precisely placing tiny drops it’s possible to mix these to produce what appear to be
perfect reproductions of any image. In the research lab today, there are similar inks that can be used to
print insulators, conductors, and semiconductors to make circuits, as well as structural materials that
can be deposited to make three-dimensional shapes. The integration of these functional materials into
a printing cartridge will make possible faithful reproductions of arbitrary objects as well as images. At
MIT we have a joke that we now take seriously: a student working on this project can graduate when
their thesis can walk out of the printer. In other words, along with printing the text of the document,
the printer must produce the means for the thesis to move.

Ultimately, rather than relying on a printer to place droplets of material, the logic for assembling an
object will be built into the materials themselves. This is exactly how our bodies are made; a
molecular machine called the ribosome translates instructions from genes into the series of steps
required to assemble all of the proteins in our bodies out of the twenty amino acids. The discovery of
building with logic is actually a few billion years old; it’s fundamental to the emergence of life.
Current research is now seeking to do the same with functional materials, creating a fundamentally
digital fabrication process based on programming the assembly of microscopic building blocks. This
mechanism will be embodied in personal fabricators fed by such structured materials. Much as a
machine today might need supplies of air, water, and electricity, a digital personal fabricator will use
as raw feedstocks streams of conductors, semiconductors, and insulators.

Unlike machines of today, though, but just like a child’s building blocks, personal fabricators will
also be able to disassemble something and sort its constituents, because the assembled objects are
constructed from a fixed set of parts. The inverse of digital fabrication is digital recycling. An object
built with digital materials can contain enough information to describe its construction, and hence its
deconstruction, so that an assembler can run in reverse to take it apart and reuse its raw materials.

We’re now on the threshold of a digital revolution in fabrication. The earlier revolutions in
digitizing communications and computation allowed equipment made from unreliable components to
reliably send messages and perform computations; the digitization of fabrication will allow perfect
macroscopic objects to be made out of imperfect microscopic components, by correcting errors in the
assembly of their constituents.

Return now to the mainframe analogy. The essential step between mainframes and PCs was

minicomputers, and a similar sequence is happening along the way to personal fabrication. It’s
possible to approximate the end point of that evolution today with a few thousand dollars of
equipment on a desktop, because engineering in space and time has become cheap.

First the space part. An inexpensive CD player places its read head with a resolution of a millionth
of a meter, a micron. Combining this metrology with a desktop computer-controlled milling machine
enables it to move a cutting tool in three dimensions with that same resolution, patterning shapes by
removing material with tolerances approaching the limits of human perception. For example, it can
cut out circuit boards with features as fine as the tiniest components.

Then the time part. A one-dollar embedded computer chip can operate faster than a millionth of a
second, a microsecond. This is fast enough to use software to perform functions that traditionally
required custom hardware, such as generating communications signals and controlling displays. It is
possible to program one such chip to take on the functions of many different kinds of circuits.

The increasing accessibility of space and time means that a relatively modest facility (on the scale
of the MIT class) can be used to create physical forms as fine as microns and program logical
functions as fast as microseconds. Such a lab needs more complex consumables than the ink required
by a printer, including copper-clad boards to make circuits and computer chips to embed into projects.
But, as the students found at MIT, these capabilities can be combined to create complete functioning
systems. The end result is much the same as what an integrated PF will be able to do, allowing
technological invention by end users.

Minicomputers showed how PCs would ultimately be used, from word processing to e-mail to the
Internet, long before technological development caught up to make them cheap enough and simple
enough for wider adoption. Struck by this analogy, I wondered if it would be possible to deploy proto-
personal fabricators in order to learn now about how they’ll be used instead of waiting for all of the
research to be completed.

This thought led to the launch of a project to create field “fab labs” for exploring the implications
and applications of personal fabrication in those parts of the planet that don’t get to go to MIT. As you
wish, “fab lab” can mean a lab for fabrication, or simply a fabulous laboratory. Just as a minicomputer
combined components—the processor, the tape drive, the keypunch, and so forth—that were
originally housed in separate cabinets, a fab lab is a collection of commercially available machines
and parts linked by software and processes we developed for making things. The first fab labs have a
laser cutter to cut out two-dimensional shapes that can be assembled into three-dimensional
structures, a sign cutter that uses a computer-controlled knife to plot flexible electrical connections
and antennas, a milling machine that moves a rotating cutting tool in three dimensions to make circuit
boards and precision parts, and the tools for programming tiny high-speed microcontrollers to embed
logic. A bit like the original PDP minicomputers, all of this could be called a Programmed Materials
Processor. This is not a static configuration; the intention over time is to replace parts of the fab lab
with parts made in the fab lab, until eventually the labs themselves are self-reproducing.

The National Science Foundation (NSF) provided the seed funding for fab labs through its support
of the Center for Bits and Atoms (CBA). NSF expects research activities that it funds on the scale of
CBA to have an educational outreach component, which all too often is limited to teaching some
classes at a local school, or creating a Web site describing the research. Instead, my CBA colleagues
and our NSF counterparts agreed to try equipping ordinary people to actually do what we’re studying
at MIT instead of just talking about it. It’s possible in the fab labs to do work that not too long ago
required the resources of a place like MIT (an observation that’s not lost on me on days when the

administrative overhead of working at a place like MIT is particularly onerous).

Starting in 2002, the first fab labs went to rural India, Costa Rica, northern Norway, inner-city
Boston, and Ghana. The equipment and supplies for each site initially cost about twenty thousand
dollars. Knowing that that cost will come down as the technology progresses, the first fab labs weren’t
meant to be economically self-sustaining. One of the first surprises from the field was the demand for
duplicating the labs even at that cost.

In keeping with the fab lab project’s goal of discovering which tools and processes would be most
useful in the field, we started setting up these labs long before we knew how best to do it. The
response in the field was as immediate as it had been at MIT. We ended up working in so many far-
flung locations because we found a demand for these capabilities around the world that was every bit
as strong as that around campus. In the village of Pabal in western India, there was interest in using
the lab to develop measurement devices for applications ranging from milk safety to agricultural
engine efficiency. In Bithoor, on the bank of the Ganges, local women wanted to do three-dimensional
scanning and printing of the carved wooden blocks used for chikan, a local kind of embroidery. Sami
herders in the Lyngen Alps of northern Norway wanted wireless networks and animal tags so that their
data could be as nomadic as their animals. People in Ghana wanted to create machines directly
powered from their abundant sunlight instead of scarce electricity. Children in inner-city Boston used
their fab lab to turn scrap material into sellable jewelry.

For all the attention to the “digital divide” in access to computers between developed and
developing countries, these recurring examples suggest that there is an even more significant divide in
access to tools for fabrication and instrumentation. Desktop computers are of little use in places that
don’t have desks; all too often they sit idle in isolated rooms built by aid agencies to house them.
Appropriate computing requires the means to make, measure, and modify the physical world of atoms
as well as the virtual world of bits. And instead of bringing information technology (IT) to the masses,
fab labs show that it’s possible to bring the tools for IT development, in order to develop and produce
local technological solutions to local problems.

There’s been a long-standing bias that technology’s role in global development mirrors its own
history, progressing from low- to high-tech. The fab lab experience suggests instead that some of the
least developed parts of the world need some of the most advanced technologies. That observation has
led me to spend some head-spinning days in Washington, DC, going from the World Bank to the
National Academy of Sciences to Capitol Hill to the Pentagon, having essentially the same meeting at
each place. Fab labs challenge assumptions that are fundamental to each of these institutions. Instead
of spending vast sums to send computers around the world, it’s possible to send the means to make
them. Instead of trying to interest kids in science as received knowledge, it’s possible to equip them to
do science, giving them both the knowledge and the tools to discover it. Instead of building better
bombs, emerging technology can help build better communities.

The problem I found on these trips was that none of these institutions knew how to pay for this kind
of work; there isn’t a Pentagon Office of Advanced Technologies for Avoiding Wars. Financing
personal fabrication in underserved communities is too directed a goal for traditional basic research
funding, and too speculative for conventional aid organizations or donors. The closest precedent is
microcredit lending, which provides small loans to help support financial cooperatives, typically run
by women, in developing countries. The loans are used to acquire an asset such as a cell phone that
can then be used to generate income. But that model doesn’t help when the financing is for an
invention. What’s needed are the skills of a good venture capitalist rather than a banker. That’s not an
oxymoron; the best venture capitalists add value to their investments by helping shepherd, prune, and

protect ideas, build operational teams, and develop business models.

The historical parallel between personal computation and personal fabrication provides a guide to
what those business models might look like. Commercial software was first written by and for big
companies, because only they could afford the mainframe computers needed to run it. When PCs came
along anyone could become a software developer, but a big company was still required to develop and
distribute big programs, notably the operating systems used to run other programs. Finally, the
technical engineering of computer networks combined with the social engineering of human networks
allowed distributed teams of individual developers to collaborate on the creation of the most complex
software.

Programmers write source code that people can understand, which gets turned into executable code
that computers can understand. Commercial companies have protected the former and distributed the
latter to their customers. But individuals who share the source code that they write can collaborate in
ad hoc groups, which might never meet physically, on the creation of programs that are larger than
any one of the members could write alone. The Linux operating system is built out of such “open
source” software. Much like the way science progresses by researchers building on one another’s
publications, a programmer can make available a piece of code that might then get taken up and
improved by someone on the opposite end of the earth.

In a world of open-source software, ownership of neither computers nor code alone provides the
basis for a proprietary business model; what’s left is the value added to them by creating content and
delivering services. Profitable old and new computer companies are making money from freely
available software in just this way: by charging for their role in solving problems.

Similarly, possession of the means for industrial production has long been the dividing line between
workers and owners. But if those means are easily acquired, and designs freely shared, then hardware
is likely to follow the evolution of software. Like its software counterpart, open-source hardware is
starting with simple fabrication functions, while nipping at the heels of complacent companies that
don’t believe that personal fabrication “toys” can do the work of their “real” machines. That boundary
will recede until today’s marketplace evolves into a continuum from creators to consumers, servicing
markets ranging from one to one billion.

That transition has already happened in the case of two-dimensional printers, the immediate
predecessor to personal fabricators. High-quality printing, once solely a commercial service, came
into the home via laser printers. The most important attribute of an industrial printing press is its
throughput, which is the number of pages it can produce per minute. Laser printers started going down
this technological scaling curve with the development of ever-faster printers needed for serious on-
demand commercial printing. Within Hewlett-Packard, a competing group of engineers had the idea
that squirting individual drops of ink could make beautiful images more cheaply than transferring
toner onto sheets. Ink-jet printing would be slower than laser printing, but they reasoned that for a
printer in the home, quality mattered much more than speed. This was such a heretical idea that this
group decamped from HP’s headquarters in Palo Alto and set up shop out of sight in Corvallis,
Oregon. The rest is business history; the relative cost of producing and selling ink-jet cartridges has
been about the closest a company has come to legally printing money. Ink-jet printing hasn’t replaced
commercial printing; it’s created an entirely new—and enormous—market driven by quality and
access rather than speed.

Similarly, the emerging personal fabrication tools I’ve been describing are intended for personal
rather than mass production. Their development was originally driven in industry by the need to
quickly create prototypes of products to catch errors before they became much more expensive to

correct in production. Machine-tool shows relegate such rapid-prototyping machines to a sleepy
corner away from the giant cutting, stamping, and molding tools that are at the top of the machine
food chain. But if the market is just one person, then the prototype is the product. The big machines
will continue to mass-produce things used in large quantities; nuts and bolts are valuable because
they’re identical rather than unique. But little machines will custom-make the products that depend on
differences, the kinds of things being made in the fab class and fab labs.

The biggest impediment to personal fabrication is not technical; it’s already possible to effectively
do it. And it’s not training; the just-in-time peer-to-peer project-based model works as well in the
field as at MIT. Rather, the biggest limitation is simply the lack of knowledge that this is even
possible. Hence this book.

Fab tells the stories of pioneering personal fabrication users, and the tools they’re using. Because
both are so striking, I’ve interwoven their stories in pairs of chapters that explore emerging
applications and the processes that make them possible. The not-so-hidden agenda is to describe not
only who is doing what but also how, providing introductions to the tools that are similar to the
orientations we give at MIT and in the field. These stop just short of hands-on training; a final section
gives enough detail on the products, programs, and processes used to duplicate what’s shown in the
book.

Throughout Fab I use what are known as “hello world” examples. In 1978, the instruction manual
for the then new C programming language written at Bell Labs used as an example a simple program
that printed out the words “hello world.” This is more exciting than it sounds, because it requires an
understanding of how to write a rudimentary program, compile it into computer code, and cause the
program to print the text. “Hello world” programs have since become staples for introducing new
computer languages; the Association for Computing Machinery currently lists 204 examples for
languages from A+ to zsh.

The difference between those “hello world” programs and the examples I give in this book is that
mine arrange atoms as well as bits, moving material as well as instructions. But the principle is the
same: show the minimum specification needed to get each of the tools to demonstrate its successful
operation. Taken together, these examples provide a fairly complete picture of the means for almost
anyone to make almost anything.

My hope is that Fab will inspire more people to start creating their own technological futures.
We’ve had a digital revolution, but we don’t need to keep having it. Personal fabrication will bring the
programmability of the digital worlds we’ve invented to the physical world we inhabit. While armies
of entrepreneurs, engineers, and pundits search for the next killer computer application, the biggest
thing of all coming in computing lies quite literally out of the box, in making the box.

. . . Almost Anything

Kelly

The first year that we taught “How To Make (almost) Anything” at MIT, Kelly Dobson was the star
student. She was an artist, with lots of ideas for projects but little electronics background. Like the
other students in the class, she applied the skills she had learned to her semester project. Unlike the
others, though, she chose to focus on the problem of needing to scream at an inconvenient time. The
result was Kelly’s ScreamBody, which looks like a fuzzy backpack worn in front rather than in back.

As Kelly describes it during a demonstration: “Have you ever really wanted to scream? But you
can’t, because you’re at work, or in any number of situations where it’s just not appropriate? Well,
ScreamBody is a portable personal space for screaming. As a person screams into ScreamBody their
scream is silenced, but it is also recorded for later release where, when, and how they choose.”

There’s a familiar sequence of reactions when people hear this. First, shock: Is she really making a
machine to save screams? Then amusement, when they see that it actually works. And then more often
than not they express a desire to get one of their own. Finally comes the appreciation of what Kelly
has in fact accomplished in making ScreamBody work.

ScreamBody

Inside ScreamBody
The first thing she did was design a circuit to save screams, then she built that into a circuit board.

This in turn required programming an embedded computer to control the sound recording and
playback. Next she developed sensors for the screamer to interact with the ScreamBody, and finally
assembled the apparatus into a comfortable, wearable package that could silence and later emit the
scream.

In a conventional corporation, a strategy group would come up with the ScreamBody’s
specifications, electrical engineers would design the circuits, computer scientists would program the
chips, mechanical engineers would make the structures, industrial designers would assemble
everything, industrial engineers would plan the production, and then marketers would try to find
someone to buy it. The only thing that Kelly finds remarkable about doing all of this herself is that
anyone finds it remarkable. For Kelly, literacy means knowing how to communicate by using all the
representations that information can take. She sees the design of circuits and packaging as aspects of
personal expression, not product development. She didn’t design ScreamBody to fill a market need;
she did it because she wanted one.

Unlike personal computers, or personal digital assistants, which are designed by teams of engineers
to meet the common needs of the largest possible market, Kelly’s personal screaming assistant is
targeted at a market base of one user: Kelly. What makes her exceptional is that, like most everyone
else, she’s not average. For her, appropriate technology helps her scream; for others it might help
them to grow food or play games or customize jewelry. Individual needs are unlikely to be met by
products aimed at mass markets. A truly personal computing device is by definition not mass-
produced, or even mass-customized; it is personally designed.

Meejin

In the years since that first class I’ve been delighted to continue to find that students—ranging from

undergrads to faculty members—have wildly different and equally quirky visions of personally
appropriate technologies. Kelly was followed by Meejin Yoon, a new professor in the architecture
department who like Kelly had no technical fabrication experience. Meejin took the class because she
wanted to be able to make her designs herself.

Meejin was struck by the ways that technology is encroaching on our personal space, and wondered
if instead it could help to define and protect it. She expressed that thought in the Defensible Dress,
which was inspired by the approach of the porcupine and blowfish to protecting their personal space.
Her device looks like a fringed flapper dress, but the fringes are stiff piano wire connected to the dress
by motors controlled by proximity sensors. When someone comes within a distance determined by the
wearer, the wires spring out to announce and defend the space around it. Countless commercial
wearable computers are aimed at maximizing communication; this is one that aims to minimize it.

Defensive dressing

Shelly

After Meejin came Shelly Levy-Tzedek, a budding biologist who was unfamiliar with how to build
with things bigger than molecules. She chose to focus on one of the most pressing practical concerns
for an MIT student: waking up. Alarm clocks now on the market are too easily defeated by sleep-
deprived scientists.

Shelly decided to make the match more even by raising the IQ of the alarm clock, so that it could
present a challenge to the would-be sleeper. She came up with an alarming-looking clock; instead of
simply turning off a button or activating a snooze mode, Shelly’s clock demands that the user grab
glowing protuberances in the order in which they randomly flash. That’s a challenging enough game
when you’re awake, but it becomes fiendishly difficult when you’re fumbling about half-awake in the
dark. When Shelly displayed the clock at a reception for fab class projects, the universal reaction was
“Where can I get one?”

An alarming clock

Fab log

sample content of Fab: The Coming Revolution on Your Desktop--from Personal Computers to
Personal Fabrication

read Girls in Power: Gender, Body, and Menstruation in Adolescence pdf, azw (kindle), epub
read The Astrology of Great Sex: Discover Your Lover's-And Your Own-Deepest Desires
Mathematics for the International Students: IB Dipolma HL Core pdf
read online Numerical Issues in Statistical Computing for the Social Scientist
NumPy Beginner's Guide (2nd Edition) pdf, azw (kindle), epub, doc, mobi

http://www.celebritychat.in/?ebooks/Girls-in-Power--Gender--Body--and-Menstruation-in-
Adolescence.pdf
http://www.1973vision.com/?library/The-World-Almanac-and-Book-of-Facts-2016.pdf
http://damianfoster.com/books/Mathematics-for-the-International-Students--IB-Dipolma-HL-
Core.pdf
http://academialanguagebar.com/?ebooks/Reclaiming-Reality--A-Critical-Introduction-to-
Contemporary-Philosophy--With-a-New-Introduction---Classical-Tex
http://academialanguagebar.com/?ebooks/Developing-Credit-Risk-Models-Using-SAS-
Enterprise-Miner-and-SAS-STAT--Theory-and-Applications.pdf

Powered by TCPDF (www.tcpdf.org)

http://www.celebritychat.in/?ebooks/Girls-in-Power--Gender--Body--and-Menstruation-in-Adolescence.pdf
http://www.1973vision.com/?library/The-World-Almanac-and-Book-of-Facts-2016.pdf
http://damianfoster.com/books/Mathematics-for-the-International-Students--IB-Dipolma-HL-Core.pdf
http://academialanguagebar.com/?ebooks/Reclaiming-Reality--A-Critical-Introduction-to-Contemporary-Philosophy--With-a-New-Introduction---Classical-Tex
http://academialanguagebar.com/?ebooks/Developing-Credit-Risk-Models-Using-SAS-Enterprise-Miner-and-SAS-STAT--Theory-and-Applications.pdf
http://www.celebritychat.in/?ebooks/Girls-in-Power--Gender--Body--and-Menstruation-in-Adolescence.pdf
http://www.celebritychat.in/?ebooks/Girls-in-Power--Gender--Body--and-Menstruation-in-Adolescence.pdf
http://www.1973vision.com/?library/The-World-Almanac-and-Book-of-Facts-2016.pdf
http://damianfoster.com/books/Mathematics-for-the-International-Students--IB-Dipolma-HL-Core.pdf
http://damianfoster.com/books/Mathematics-for-the-International-Students--IB-Dipolma-HL-Core.pdf
http://academialanguagebar.com/?ebooks/Reclaiming-Reality--A-Critical-Introduction-to-Contemporary-Philosophy--With-a-New-Introduction---Classical-Tex
http://academialanguagebar.com/?ebooks/Reclaiming-Reality--A-Critical-Introduction-to-Contemporary-Philosophy--With-a-New-Introduction---Classical-Tex
http://academialanguagebar.com/?ebooks/Developing-Credit-Risk-Models-Using-SAS-Enterprise-Miner-and-SAS-STAT--Theory-and-Applications.pdf
http://academialanguagebar.com/?ebooks/Developing-Credit-Risk-Models-Using-SAS-Enterprise-Miner-and-SAS-STAT--Theory-and-Applications.pdf
http://www.tcpdf.org

