
 

Rhodes
Goerzen

Shelve in
Programming Languages/General

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Foundations of Python Network 
Programming
Foundations of Python Network Programming, Third Edition, covers all of the classic 
topics found in the second edition of this book, including network protocols, 
network data and errors, email, server architecture, and HTTP and web applications, 
plus updates for Python 3.

Some of the new topics in this edition include:

attack your web site, and how to protect against them

from your database to the screen and back

web application developers, to systems integrators, to system administrators—
this book has everything that you need to know.

THIRD
EDITION

RELATED

9 781430 258544

54999
ISBN 978-1-4302-5854-4



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For your convenience Apress has placed some of the front 
matter material after the index. Please use the Bookmarks 

and Contents at a Glance links to access them. 
 
 

 
 

 



 

v

Contents at a Glance

About the Authors ............................................................................................................. xvii

About the Technical Reviewers ......................................................................................... xix

Acknowledgments ............................................................................................................. xxi

Introduction ..................................................................................................................... xxiii

Chapter 1: Introduction to Client-Server Networking  ........................................................1

Chapter 2: UDP  ................................................................................................................17

Chapter 3: TCP  .................................................................................................................39

Chapter 4: Socket Names and DNS  ..................................................................................57

Chapter 5: Network Data and Network Errors  .................................................................75

Chapter 6: TLS/SSL  ..........................................................................................................93

Chapter 7: Server Architecture  ......................................................................................115

Chapter 8: Caches and Message Queues  .......................................................................137

Chapter 9: HTTP Clients  .................................................................................................151

Chapter 10: HTTP Servers  ..............................................................................................169

Chapter 11: The World Wide Web  ..................................................................................183

Chapter 12: Building and Parsing E-Mail  ......................................................................223

Chapter 13: SMTP  ..........................................................................................................241

Chapter 14: POP  ............................................................................................................259

Chapter 15: IMAP  ...........................................................................................................267



  CONTENTS AT A GLANCE

vi

Chapter 16: Telnet and SSH  ...........................................................................................289

Chapter 17: FTP  .............................................................................................................317

Chapter 18: RPC  .............................................................................................................331

Index .................................................................................................................................349



 

xxiii

Introduction

It is an exciting moment for the Python community. After two decades of careful innovation that saw the language 
gain features such as context managers, generators, and comprehensions in a careful balance with its focus on 
remaining simple in both its syntax and its concepts, Python is finally taking off. 

Instead of being seen as a boutique language that can be risked only by top-notch programming shops such 
as Google and NASA, Python is now experiencing rapid adoption, both in traditional programming roles, such as 
web application design, and in the vast world of “reluctant programmers,” such as scientists, data specialists, and 
engineers—people who learn to program not for its own sake but because they must write programs if they are to 
make progress in their field. The benefits that a simple programming language offers for the occasional or nonexpert 
programmer cannot, I think, be overstated.

Python 3
After its debut in 2008, Python 3 went through a couple of years of reworking and streamlining before it was ready 
to step into the role of its predecessor. But as it now enters its second half-decade, it has emerged as the preferred 
platform for innovation in the Python community.

Whether one looks at fundamental improvements, like the fact that true Unicode text is now the default string 
type in Python 3, or at individual improvements, like correct support for SSL, a built-in asyncio framework for 
asynchronous programming, and tweaks to Standard Library modules large and small, the platform that Python 3  
offers the network programmer is in nearly every way improved. This is a significant achievement. Python 2 was 
already one of the best languages for making programmers quickly and effectively productive on the modern Internet.

This book is not a comprehensive guide to switching from Python 2 to Python 3. It will not tell you how to add 
parentheses to your old print statements, rename Standard Library module imports to their new names, or debug 
deeply flawed network code that relied on Python 2’s dangerous automatic conversion between byte strings and 
Unicode strings—conversions that were always based on rough guesswork. There are already excellent resources to 
help you with that transition or even to help you write libraries carefully enough so that their code will work under 
both Python 2 and Python 3, in case you need to support both audiences.

Instead, this book focuses on network programming, using Python 3 for every example script and snippet of code at 
the Python prompt. These examples are intended to build a comprehensive picture of how network clients, network servers, 
and network tools can best be constructed from the tools provided by the language. Readers can study the transition from 
Python 2 to Python 3 by comparing the scripts used in each chapter of the second edition of this book with the listings here 
in the third edition—both of which are available at https://github.com/brandon-rhodes/fopnp/tree/m/ thanks to the 
excellent Apress policy of making source code available online. The goal in each of the following chapters is simply to show 
you how Python 3 can best be used to solve modern network programming problems.

By focusing squarely on how to accomplish things the right way with Python 3, this book hopes to prepare both 
the programmer who is getting ready to write a new application from the ground up and the programmer preparing 
to transition an old code base to the new conventions. Both programmers should come away knowing what correct 
networking code looks like in Python 3 and therefore knowing the look and flavor of the kind of code that ought to be 
their goal.



  INTRODUCTION

xxiv

Improvements in This Edition
There are several improvements by which this book attempts to update the previous edition, beyond the move to 
Python 3 as its target language and the many updates to both Standard Library and third-party Python modules that 
have occurred in the past half-decade.

Every Python program listing is now written as a module. That is, each one performs its 
imports and defines its functions or classes but then carefully guards any import-time actions 
inside an if statement that fires only if the module __name__ has the special string value 
'__main__' indicating that the module is being run as the main program. This is a Python best 
practice that was almost entirely neglected in the previous edition of this book and whose 
absence made it more difficult for the sample listings to be pulled into real codebases and 
used to solve reader problems. By putting their executable logic at the left margin instead of 
inside an if statement, the older program listings may have saved a line or two of code, but 
they gave novice Python programmers far less practice in how to lay out real code.

Instead of making ad hoc use of the raw sys.argv list of strings in a bid to interpret the 
command line, most of the scripts in this book now use the Standard Library argparse 
module to interpret options and arguments. This not only clarifies and documents the 
semantics that each script expects during invocation but also lets the user of each script use 
the –h or --help query option to receive interactive assistance when launching the script from 
the Windows or Unix command line.

Program listings now make an effort to perform proper resource control by opening files 
within a controlling with statement that will close the files automatically when it completes. 
In the previous edition, most listings relied instead on the fact that the C Python runtime 
from the main Python web site usually assures that files are closed immediately thanks to its 
aggressive reference counting.

The listings, for the most part, have transitioned to the modern format() method for 
performing string interpolation and away from the old modulo operator hack string % tuple 
that made sense in the 1990s, when most programmers knew the C language, but that is less 
readable today for new programmers entering the field—and less powerful since individual 
Python classes cannot override percent formatting like they can with the new kind.

The three chapters on HTTP and the World Wide Web (Chapters 9 through 11) have been 
rewritten from the ground up with an emphasis on better explaining the protocol and on 
introducing the most modern tools that Python offers the programmer writing for the Web. 
Explanations of the HTTP protocol now use the Requests library as their go-to API for 
performing client operations, and Chapter 11 has examples in both Flask and Django.

The material on SSL/TLS (Chapter 6) has been completely rewritten to match the vast 
improvement in support that Python 3 delivers for secure applications. While the ssl module 
in Python 2 is a weak half-measure that does not even verify that the server’s certificate 
matches the hostname to which Python is connecting, the same module in Python 3 presents 
a much more carefully designed and extensive API that provides generous control over its 
features.

This edition of the book is therefore a better resource for the learning programmer simply in terms of how the 
listings and examples are constructed, even apart from the improvements that Python 3 has made over previous 
versions of the language.



  INTRODUCTION

xxv

Representing the typical situation of a client in a home or coffee shop are the client machines 
behind modemA and modemB that not only offer no services to the Internet but that are in fact 
not visible on the wider Internet at all. They possess merely local IP addresses, which are 
meaningful only on the subnet that they share with any other hosts in the same home or coffee 
shop. When they make connections to the outside world, those connections will appear to 
originate from the IP addresses of the modems themselves.

Direct connections allow the modems to connect to an isp gateway out on the wider Internet, 
which is represented by a single backbone router that forwards packets between the networks 
to which it is connected.

The Network Playground
The source code to the program listings in this book is available online so that both current owners of this book and 
potential readers can study them. There is a directory for each chapter of this edition of the book. You can find the 
chapter directories here:

https://github.com/brandon-rhodes/fopnp/tree/m/py3

But program listings can go only so far toward supporting the curious student of network programming. There are 
many features of network programming that are difficult to explore from a single host machine. Thus, the source code 
repository for the book provides a sample network of 12 machines, each implemented as a Docker container. A setup 
script is provided that builds the images, launches them, and networks them. You can find the script and the images in 
the source code repository here:

https://github.com/brandon-rhodes/fopnp/tree/m/playground

You can see the 12 machines and their interconnections in Figure 1. The network is designed to resemble a tiny 
version of the Internet.

Figure 1. The network playground’s topology



  INTRODUCTION

xxvi

example.com and its associated machines represent the configuration of a simple  
service-oriented machine room. Here, no network translation or masquerading is taking 
place. The three servers behind example.com have service ports that are fully exposed to client 
traffic from the Internet.

Each of the service machines ftp, mail, and www has correctly configured daemons up and 
running so that Python scripts from this book can be run on the other machines in the 
playground to connect successfully to representative examples of each service.

All of the service machines have correctly installed TLS certificates (see Chapter 6), and the 
client machines all have the example.com signing certificate installed as a trusted certificate. 
This means Python scripts demanding true TLS authentication will be able to achieve it.

The network playground will continue to be maintained as both Python and Docker continue to evolve. 
Instructions will be maintained in the repository for how to download and run the network locally on your own 
machine, and they will be tweaked based on user reports to make sure that a virtual machine, which offers the 
playground, can be run by readers on Linux, Mac OS X, and Windows machines.

With the ability to connect and run commands within any of the playground machines, you will be able to set 
up packet tracing at whichever point on the network you want to see traffic passing between clients and servers. The 
example code demonstrated in its documentation, combined with the examples and instruction in this book, should 
help you reach a solid and vivid understanding of how networks help clients and servers communicate.



 

1

CHAPTER 1

Introduction to Client-Server 
Networking

This book explores network programming in the Python language. It covers the basic concepts, modules, and  
third-party libraries that you are likely to use when communicating with remote machines using the most popular 
Internet communication protocols.

The book lacks the space to teach you how to program in Python if you have never seen the language before or if 
you have never even written a computer program at all; it presumes that you have already learned something about 
Python programming from the many excellent tutorials and books on the subject. I hope that the Python examples 
in the book give you ideas about how to structure and write your own code. But I will be using all sorts of advanced 
Python features without explanation or apology—though, occasionally, I might point out how I am using a particular 
technique or construction when I think it is particularly interesting or clever.

On the other hand, this book does not start by assuming you know any networking! As long as you have ever used 
a web browser or sent an e-mail, you should know enough to start reading this book at the beginning and learn about 
computer networking along the way. I will approach networking from the point of view of an application programmer 
who is either implementing a network-connected service—such as a web site, an e-mail server, or a networked 
computer game—or writing a client program that is designed to use such a service.

Note that you will not, however, learn how to set up or configure networks from this book. The disciplines 
of network design, server room management, and automated provisioning are full topics all on their own, which 
tend not to overlap with the discipline of computer programming as covered in this particular book. While Python 
is indeed becoming a big part of the provisioning landscape thanks to projects such as OpenStack, SaltStack, and 
Ansible, you will want to search for books and documentation that are specifically about provisioning and its many 
technologies if you want to learn more about them.

The Building Blocks: Stacks and Libraries
As you begin to explore Python network programming, there are two concepts that will appear over and over again.

The idea of a protocol stack, in which simpler network services are used as the foundation on 
which to build more sophisticated services.

The fact that you will often be using Python libraries of previously written code—whether 
modules from the built-in standard library that ships with Python or packages from third-party 
distributions that you download and install—that already know how to speak the network 
protocol that you want to use.



 CHAPTER 1  INTRODUCTION TO CLIENT-SERVER NETWORKING

2

In many cases, network programming simply involves selecting and using a library that already supports the 
network operations that you need to perform. The major purposes of this book are to introduce you to several key 
networking libraries available for Python while also teaching you about the lower-level network services on which 
those libraries are built. Knowing the lower-level material is useful, both so that you understand how the libraries 
work and so that you will understand what is happening when something at a lower level goes wrong.

Let’s begin with a simple example. Here is a mailing address:
 
207 N. Defiance St
Archbold, OH
 

I am interested in knowing the latitude and longitude of this physical address. It just so happens that Google 
provides a Geocoding API that can perform such a conversion. What would you have to do to take advantage of this 
network service from Python?

When looking at a new network service that you want to use, it is always worthwhile to start by finding out 
whether someone has already implemented the protocol—in this case, the Google Geocoding protocol—which 
your program will need to speak. Start by scrolling through the Python Standard Library documentation, looking for 
anything having to do with geocoding.
 
http://docs.python.org/3/library/
 

Do you see anything about geocoding? No, neither do I. But it is important for a Python programmer to look 
through the Standard Library’s table of contents pretty frequently, even if you usually do not find what you are 
looking for, because each read-through will make you more familiar with the services that are included with Python. 
Doug Hellmann’s “Python Module of the Week” blog is another great reference from which you can learn about the 
capabilities that come with Python thanks to its Standard Library.

Since in this case the Standard Library does not have a package to help, you can turn to the Python Package 
Index, an excellent resource for finding all sorts of general-purpose Python packages contributed by other 
programmers and organizations from across the world. You can also, of course, check the web site of the vendor 
whose service you will be using to see whether it provides a Python library to access it. Or, you can do a general 
Google search for Python plus the name of whatever web service you want to use and see whether any of the first few 
results link to a package that you might want to try.

In this case, I searched the Python Package Index, which lives at this URL:
 
https://pypi.python.org/
 

There I entered geocoding, and I immediately found a package that is named pygeocoder, which provides a clean 
interface to Google’s geocoding features (though, you will note from its description, it is not vendor-provided but was 
instead written by someone besides Google).
 
http://pypi.python.org/pypi/pygeocoder/
 

This is such a common situation—finding a Python package that sounds like it might already do exactly what 
you want and that you want to try it on your system—that I should pause for a moment and introduce you to the best 
Python technology for quickly trying a new library: virtualenv!

In the old days, installing a Python package was a gruesome and irreversible act that required administrative 
privileges on your machine and that left your system Python install permanently altered. After several months of 
heavy Python development, your system Python install could become a wasteland of dozens of packages, all installed 
by hand, and you could even find that new packages you tried to install would break because they were incompatible 
with the old packages sitting on your hard drive from a project that ended months ago.



 CHAPTER 1  INTRODUCTION TO CLIENT-SERVER NETWORKING

3

Careful Python programmers do not suffer from this situation any longer. Many of us install only one Python 
package systemwide—ever—and that is virtualenv! Once virtualenv is installed, you have the power to create any 
number of small, self-contained “virtual Python environments” where packages can be installed and un-installed 
and with which you can experiment, all without contaminating your systemwide Python. When a particular project or 
experiment is over, you simply remove its virtual environment directory, and your system is clean.

In this case, you want to create a virtual environment in which to test the pygeocoder package. If you have never 
installed virtualenv on your system before, visit this URL to download and install it:
 
http://pypi.python.org/pypi/virtualenv
 

Once you have virtualenv installed, you can create a new environment using the following commands. (On 
Windows, the directory containing the Python binary in the virtual environment will be named Scripts instead of bin.)
 
$ virtualenv –p python3 geo_env
$ cd geo_env
$ ls
bin/  include/  lib/
$ . bin/activate
$ python -c 'import pygeocoder'
Traceback (most recent call last):
  File "<string>", line 1, in <module>
ImportError: No module named 'pygeocoder'
 

As you can see, the pygeocoder package is not yet available. To install it, use the pip command that is inside your 
virtual environment that is now on your path thanks to your having run the activate command.
 
$ pip install pygeocoder
Downloading/unpacking pygeocoder
  Downloading pygeocoder-1.2.1.1.tar.gz
  Running setup.py egg_info for package pygeocoder
     
Downloading/unpacking requests>=1.0 (from pygeocoder)
  Downloading requests-2.0.1.tar.gz (412kB): 412kB downloaded
  Running setup.py egg_info for package requests
     
Installing collected packages: pygeocoder, requests
  Running setup.py install for pygeocoder
     
  Running setup.py install for requests
     
Successfully installed pygeocoder requests
Cleaning up...
 

The python binary inside the virtualenv will now have the pygeocoder package available.
 
$ python -c 'import pygeocoder'
 

Now that you have the pygeocoder package installed, you should be able to run the simple program named 
search1.py, as shown in Listing 1-1.



 CHAPTER 1  INTRODUCTION TO CLIENT-SERVER NETWORKING

4

Listing 1-1. Fetching a Longitude and Latitude

#!/usr/bin/env python3
# Foundations of Python Network Programming, Third Edition
# https://github.com/brandon-rhodes/fopnp/blob/m/py3/chapter01/search1.py
 
from pygeocoder import Geocoder
 
if __name__ == '__main__':
    address = '207 N. Defiance St, Archbold, OH'
    print(Geocoder.geocode(address)[0].coordinates)
 

By running it at the command line, you should see a result like this:
 
$ python3 search1.py
(41.521954, -84.306691)
 

And there, right on your computer screen is the answer to our question about the address’s latitude and 
longitude! The answer has been pulled directly from Google’s web service. The first example program is a rousing 
success.

Are you annoyed to have opened a book on Python network programming only to have found yourself 
immediately directed to download and install a third-party package that turned what might have been an interesting 
networking problem into a boring three-line Python script? Be at peace! Ninety percent of the time, you will find that 
this is exactly how programming challenges are solved—by finding other programmers in the Python community who 
have already tackled the problem you are facing and then building intelligently and briefly upon their solutions.

You are not yet done exploring this example, however. You have seen that a complex network service can often be 
accessed quite trivially. But what is behind the pretty pygeocoder interface? How does the service actually work? You 
will now explore, in detail, how this sophisticated service is actually just the top layer of a network stack that involves 
at least a half-dozen different levels.

Application Layers
The first program listing used a third-party Python library, downloaded from the Python Package Index, to solve a 
problem. It knew all about the Google Geocoding API and the rules for using it. But what if that library had not already 
existed? What if you had to build a client for Google’s Maps API on your own?

For the answer, take a look at search2.py, as shown in Listing 1-2. Instead of using a geocoding-aware third-party 
library, it drops down one level and uses the popular requests library that lies behind pygeocoding and that, as you 
can see from the pip install command earlier, has also been installed in your virtual environment.

Listing 1-2. Fetching a JSON Document from the Google Geocoding API

#!/usr/bin/env python3
# Foundations of Python Network Programming, Third Edition
# https://github.com/brandon-rhodes/fopnp/blob/m/py3/chapter01/search2.py
 
import requests
 
def geocode(address):
    parameters = {'address': address, 'sensor': 'false'}
    base = 'http://maps.googleapis.com/maps/api/geocode/json'
    response = requests.get(base, params=parameters)



 CHAPTER 1  INTRODUCTION TO CLIENT-SERVER NETWORKING

5

    answer = response.json()
    print(answer['results'][0]['geometry']['location'])
 
if __name__ == '__main__':
    geocode('207 N. Defiance St, Archbold, OH')
 

Running this Python program returns an answer quite similar to that of the first script.
 
$ python3 search2.py
{'lat': 41.521954, 'lng': -84.306691}
 

The output is not exactly the same—you can see, for example, that the JSON data encoded the result as an 
“object” that requests has handed to you as a Python dictionary. But it is clear that this script has accomplished much 
the same thing as the first one.

The first thing that you will notice about this code is that the semantics offered by the higher-level pygeocoder 
module are absent. Unless you look closely at this code, you might not even see that it’s asking about a mailing 
address at all! Whereas search1.py asked directly for an address to be turned into a latitude and longitude, the second 
listing painstakingly builds both a base URL and a set of query parameters whose purpose might not even be clear to 
you unless you have already read the Google documentation. If you want to read the documentation, by the way, you 
can find the API described here:
 
http://code.google.com/apis/maps/documentation/geocoding/
 

If you look closely at the dictionary of query parameters in search2.py, you will see that the address parameter 
provides the particular mailing address about which you are asking. The other parameter informs Google that you are 
not issuing this location query because of data pulled live from a mobile device location sensor.

When you receive a document back as a result of looking up this URL, you manually call the response.json() 
method to interpret it as JSON and then dive into the multilayered resulting data structure to find the correct element 
inside that holds the latitude and longitude.

The search2.py script then does the same thing as search1.py—but instead of doing so in the language of 
addresses and latitudes, it talks about the gritty details of constructing a URL, fetching a response, and parsing it as 
JSON. This is a common difference when you step down a level from one layer of a network stack to the layer beneath 
it: whereas the high-level code talked about what a request meant, the lower-level code can see only the details of how 
the request is constructed.

Speaking a Protocol
So, the second example script creates a URL and fetches the document that corresponds to it. That operation sounds 
quite simple, and, of course, your web browser works hard to make it look quite elementary. But the real reason that a 
URL can be used to fetch a document, of course, is that the URL is a kind of recipe that describes where to find—and 
how to fetch—a given document on the Web. The URL consists of the name of a protocol, followed by the name of the 
machine where the document lives, and finishes with the path that names a particular document on that machine. 
The reason then that the search2.py Python program is able to resolve the URL and fetch the document at all is that 
the URL provides instructions that tell a lower-level protocol how to find the document.

The lower-level protocol that the URL uses, in fact, is the famous Hypertext Transfer Protocol (HTTP), which 
is the basis of nearly all modern web communications. You will learn more about it in Chapters 9, 10, and 11 of this 
book. It is HTTP that provides the mechanism by which the Requests library is able to fetch the result from Google. 
What do you think it would look like if you were to strip that layer of magic off—what if you wanted to use HTTP to 
fetch the result directly? The result is search3.py, as shown in Listing 1-3.



 CHAPTER 1  INTRODUCTION TO CLIENT-SERVER NETWORKING

6

Listing 1-3. Making a Raw HTTP Connection to Google Maps

#!/usr/bin/env python3
# Foundations of Python Network Programming, Third Edition
# https://github.com/brandon-rhodes/fopnp/blob/m/py3/chapter01/search3.py
 
import http.client
import json
from urllib.parse import quote_plus
 
base = '/maps/api/geocode/json'
 
def geocode(address):
    path = '{}?address={}&sensor=false'.format(base, quote_plus(address))
    connection = http.client.HTTPConnection('maps.google.com')
    connection.request('GET', path)
    rawreply = connection.getresponse().read()
    reply = json.loads(rawreply.decode('utf-8'))
    print(reply['results'][0]['geometry']['location'])
 
if __name__ == '__main__':
    geocode('207 N. Defiance St, Archbold, OH')
 

In this listing, you are directly manipulating the HTTP protocol: asking it to connect to a specific machine, to 
issue a GET request with a path that you have constructed by hand, and finally to read the reply directly from the 
HTTP connection. Instead of being able conveniently to provide your query parameters as separate keys and values 
in a dictionary, you are having to embed them directly, by hand, in the path that you are requesting by first writing a 
question mark (?) followed by the parameters in the format name=value separated by & characters.

The result of running the program, however, is much the same as for the programs shown previously.
 
$ python3 search3.py
{'lat': 41.521954, 'lng': -84.306691}
 

As you will see throughout this book, HTTP is just one of many protocols for which the Python Standard Library 
provides a built-in implementation. In search3.py, instead of having to worry about all of the details of how HTTP 
works, your code can simply ask for a request to be sent and then take a look at the resulting response. The protocol 
details that the script has to deal with are, of course, more primitive than those of search2.py, because you have 
stepped down another level in the protocol stack, but at least you are still able to rely on the Standard Library to 
handle the actual network data and make sure that you get it right.

A Raw Network Conversation
HTTP cannot simply send data between two machines using thin air, of course. Instead, the HTTP protocol must 
operate by using some even simpler abstraction. In fact, it uses the capacity of modern operating systems to support a 
plain-text network conversation between two different programs across an IP network by using the TCP protocol. The 
HTTP protocol, in other words, operates by dictating exactly what the text of the messages will look like that pass back 
and forth between two hosts that can speak TCP.

When you move beneath HTTP to look at what happens below it, you are dropping down to the lowest level of the 
network stack that you can still access easily from Python. Take a careful look at search4.py, as shown in Listing 1-4. It 
makes exactly the same networking request to Google Maps as the previous three programs, but it does so by sending 
a raw text message across the Internet and receiving a bundle of text in return.



 CHAPTER 1  INTRODUCTION TO CLIENT-SERVER NETWORKING

7

Listing 1-4. Talking to Google Maps Through a Bare Socket

#!/usr/bin/env python3
# Foundations of Python Network Programming, Third Edition
# https://github.com/brandon-rhodes/fopnp/blob/m/py3/chapter01/search4.py
 
import socket
from urllib.parse import quote_plus
 
request_text = """\
GET /maps/api/geocode/json?address={}&sensor=false HTTP/1.1\r\n\
Host: maps.google.com:80\r\n\
User-Agent: search4.py (Foundations of Python Network Programming)\r\n\
Connection: close\r\n\
\r\n\
"""
 
def geocode(address):
    sock = socket.socket()
    sock.connect(('maps.google.com', 80))
    request = request_text.format(quote_plus(address))
    sock.sendall(request.encode('ascii'))
    raw_reply = b''
    while True:
        more = sock.recv(4096)
        if not more:
            break
        raw_reply += more
    print(raw_reply.decode('utf-8'))
 
if __name__ == '__main__':
    geocode('207 N. Defiance St, Archbold, OH')
 

In moving from search3.py to search4.py, you have passed an important threshold. In every previous program 
listing, you were using a Python library—written in Python itself—that knew how to speak a complicated network 
protocol on your behalf. But here you have reached the bottom: you are calling the raw socket() function that is 
provided by the host operating system to support basic network communications on an IP network. You are, in other 
words, using the same mechanisms that a low-level system programmer would use in the C language when writing 
this same network operation.

You will learn more about sockets over the next few chapters. For now, you can notice in search4.py that raw 
network communication is a matter of sending and receiving byte strings. The request that you send is one byte string, 
and the reply—that, in this case, you simply print to the screen so that you can experience it in all of its low-level 
glory—is another large byte string. (See the section “Encoding and Decoding,” later in this chapter for the details 
of why you decode the string before printing it.) The HTTP request, whose text you can see inside the sendall() 
function, consists of the word GET—the name of the operation you want performed—followed by the path of the 
document you want fetched and the version of HTTP you support.
 
GET /maps/api/geocode/json?address=207+N.+Defiance+St%2C+Archbold%2C+OH&sensor=false HTTP/1.1
 

Then there are a series of headers that each consist of a name, a colon, and a value, and finally a carriage-return/
newline pair that ends the request.



 CHAPTER 1  INTRODUCTION TO CLIENT-SERVER NETWORKING

8

The reply, which will print as the script’s output if you run search4.py, is shown as Listing 1-5. I chose simply to 
print the reply to the screen in this example, rather than write the complex text-manipulation code that would be able 
to interpret the response. I did so because I thought that simply reading the HTTP reply on your screen would give you 
a much better idea of what it looks like than if you had to decipher code designed to interpret it.

Listing 1-5. The Output of Running search4.py

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Date: Sat, 23 Nov 2013 18:34:30 GMT
Expires: Sun, 24 Nov 2013 18:34:30 GMT
Cache-Control: public, max-age=86400
Vary: Accept-Language
Access-Control-Allow-Origin: *
Server: mafe
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Alternate-Protocol: 80:quic
Connection: close
 
{
   "results" : [
      {
         ...
         "formatted_address" : "207 North Defiance Street, Archbold, OH 43502, USA",
         "geometry" : {
            "location" : {
               "lat" : 41.521954,
               "lng" : -84.306691
            },
            ...
         },
         "types" : [ "street_address" ]
      }
   ],
   "status" : "OK"
}
 

You can see that the HTTP reply is quite similar in structure to the HTTP request. It begins with a status line, 
which is followed by a number of headers. After a blank line, the response content itself is shown: a JavaScript data 
structure, in a simple format known as JSON, that answers your query by describing the geographic location that the 
Google Geocoding API search has returned.

All of these status lines and headers, of course, are exactly the sort of low-level details that Python’s httplib 
was taking care of in the earlier listings. Here, you see what the communication looks like if that layer of software is 
stripped away.



 CHAPTER 1  INTRODUCTION TO CLIENT-SERVER NETWORKING

9

Turtles All the Way Down
I hope you have enjoyed these initial examples of what Python network programming can look like. Stepping back,  
I can use this series of examples to make several points about network programming in Python.

First, you can perhaps now see more clearly what is meant by the term protocol stack: it means building a  
high-level, semantically sophisticated conversation (“I want the geographic location of this mailing address”) on top 
of simpler, and more rudimentary, conversations that ultimately are just text strings sent back and forth between two 
computers using their network hardware.

The particular protocol stack that you have just explored is four protocols high.

On top is the Google Geocoding API, which tells you how to express your geographic queries 
as URLs that fetch JSON data containing coordinates.

URLs name documents that can be retrieved using HTTP.

HTTP supports document-oriented commands such as GET using raw TCP/IP sockets.

TCP/IP sockets know how only to send and receive byte strings.

Each layer of the stack, you see, uses the tools provided by the layer beneath it and in turn offers capabilities to 
the next higher layer.

A second point made clear through these examples is how very complete the Python support is for every one 
of the network levels at which you have just operated. Only when using a vendor-specific protocol, and needing to 
format requests so that Google would understand them, was it necessary to resort to using a third-party library; I chose 
requests for the second listing not because the Standard Library lacks the urllib.request module but because its API 
is overly clunky. Every single one of the other protocol levels you encountered already had strong support inside the 
Python Standard Library. Whether you wanted to fetch the document at a particular URL or send and receive strings on 
a raw network socket, Python was ready with functions and classes that you could use to get the job done.

Third, note that my programs decreased considerably in quality as I forced myself to use increasingly lower-level  
protocols. The search2.py and search3.py listings, for example, started to hard-code things such as the form 
structure and hostnames in a way that is inflexible and that might be hard to maintain later. The code in search4.py  
is even worse: it includes a handwritten, unparameterized HTTP request whose structure is completely opaque to 
Python. And, of course, it contains none of the actual logic that would be necessary to parse and interpret the HTTP 
response and understand any network error conditions that might occur.

This illustrates a lesson that you should remember throughout every subsequent chapter of this book: that 
implementing network protocols correctly is difficult and that you should use the Standard Library or third-party 
libraries whenever possible. Especially when you are writing a network client, you will always be tempted to 
oversimplify your code; you will tend to ignore many error conditions that might arise, to prepare for only the most 
likely responses, to avoid properly escaping parameters because you fondly believe that your query strings will only 
ever include simple alphabetic characters, and, in general, to write very brittle code that knows as little about the 
service it is talking to as is technically possible. By instead using a third-party library that has developed a thorough 
implementation of a protocol, which has had to support many different Python developers who are using the library 
for a variety of tasks, you will benefit from all of the edge cases and awkward corners that the library implementer has 
already discovered and learned how to handle properly.

Fourth, it needs to be emphasized that higher-level network protocols—such as the Google Geocoding API 
for resolving a street address—generally work by hiding the network layers beneath them. If you only ever used the 
pygeocoder library, you might not even be aware that URLs and HTTP are the lower-level mechanisms that are being 
used to construct and answer your queries!

An interesting question, whose answer varies depending on how carefully a Python library has been written, is 
whether the library correctly hides errors at those lower levels. Could a network error that makes Google temporarily 
unreachable from your location raise a raw, low-level networking exception in the middle of code that’s just trying 
to find the coordinates of a street address? Or will all errors be changed into a higher-level exception specific to 
geocoding? Pay careful attention to the topic of catching network errors as you go forward throughout this book, 
especially in the chapters of this first part with their emphasis on low-level networking.



 CHAPTER 1  INTRODUCTION TO CLIENT-SERVER NETWORKING

10

Finally, we have reached the topic that will occupy you for the rest of this first part of the book: the socket() 
interface used in search4.py is not, in fact, the lowest protocol level in play when you make this request to Google! 
Just as the example has network protocols operating above the level above raw sockets, so also there are protocols 
down beneath the sockets abstraction that Python cannot see because your operating system manages them instead.

The layers operating below the socket() API are the following:

The Transmission Control Protocol (TCP) supports two-way conversations made of streams of 
bytes by sending (or perhaps re-sending), receiving, and re-ordering small network messages 
called packets.

The Internet Protocol (IP) knows how to send packets between different computers.

The “link layer,” at the very bottom, consists of network hardware devices such as Ethernet 
ports and wireless cards, which can send physical messages between directly linked 
computers.

Throughout the rest of this chapter, and in the two chapters that follow, you will explore these lowest protocol 
levels. You will start in this chapter by examining the IP level and then proceed in the following chapters to see how 
two quite different protocols—UDP and TCP—support the two basic kinds of conversation that are possible between 
applications on a pair of Internet-connected hosts.

But first, a few words about bytes and characters.

Encoding and Decoding
The Python 3 language makes a strong distinction between strings of characters and low-level sequences of bytes. 
Bytes are the actual binary numbers that computers transmit back and forth during network communication, each 
consisting of eight binary digits and ranging from the binary value 00000000 to 11111111 and thus from the decimal 
integer 0 to 255. Strings of characters in Python can contain Unicode symbols like a (“Latin small letter A,” the Unicode 
standard calls it) or } (“right curly bracket”) or ∅ (empty set). While each Unicode character does indeed each have 
a numeric identifier associated with it, called its code point, you can treat this as an internal implementation detail—
Python 3 is careful to make characters always behave like characters, and only when you ask will Python convert the 
characters to and from actual externally visible bytes.

These two operations have formal names.
Decoding is what happens when bytes are on their way into your application and you need to figure out what they 

mean. Think of your application, as it receives bytes from a file or across the network, as a classic Cold War spy whose 
task is to decipher the transmission of raw bytes arriving from across a communications channel.

Encoding is the process of taking character strings that you are ready to present to the outside world and turning 
them into bytes using one of the many encodings that digital computers use when they need to transmit or store 
symbols using the bytes that are their only real currency. Think of your spy as having to turn their message back into 
numbers for transmission, as turning the symbols into a code that can be sent across the network.

These two operations are exposed quite simply and obviously in Python 3 as a decode() method that you can 
apply to byte strings after reading them in and as an encode() method that you can call on character strings when you 
are ready to write them back out. The techniques are illustrated in Listing 1-6.

Listing 1-6. Decoding Input Bytes and Encoding Characters for Output

#!/usr/bin/env python3
# Foundations of Python Network Programming, Third Edition
# https://github.com/brandon-rhodes/fopnp/blob/m/py3/chapter01/stringcodes.py
 
if __name__ == '__main__':
    # Translating from the outside world of bytes to Unicode characters.
    input_bytes = b'\xff\xfe4\x001\x003\x00 \x00i\x00s\x00 \x00i\x00n\x00.\x00'



 CHAPTER 1  INTRODUCTION TO CLIENT-SERVER NETWORKING

11

    input_characters = input_bytes.decode('utf-16')
    print(repr(input_characters))
 
    # Translating characters back into bytes before sending them.
    output_characters = 'We copy you down, Eagle.\n'
    output_bytes = output_characters.encode('utf-8')
    with open('eagle.txt', 'wb') as f:
        f.write(output_bytes)
 

The examples in this book attempt to differentiate carefully between bytes and characters. Note that the two have 
different appearances when you display their repr(): byte strings start with the letter b and look like b'Hello', while 
real full-fledged character strings take no initial character and simply look like 'world'. To try to discourage confusion 
between byte strings and character strings, Python 3 offers most string methods only on the character string type.

The Internet Protocol
Both networking, which occurs when you connect several computers with a physical link so that they can 
communicate, and internetworking, which links adjacent physical networks to form a much larger system like the 
Internet, are essentially just elaborate schemes to allow resource sharing.

All sorts of things in a computer, of course, need to be shared: disk drives, memory, and the CPU are all carefully 
guarded by the operating system so that the individual programs running on your computer can access those 
resources without stepping on each other’s toes. The network is yet another resource that the operating system needs 
to protect so that programs can communicate with one another without interfering with other conversations that 
happen to be occurring on the same network.

The physical networking devices that your computer uses to communicate—like Ethernet cards, wireless 
transmitters, and USB ports—are themselves each designed with an elaborate ability to share a single physical 
medium among many different devices that want to communicate. A dozen Ethernet cards might be plugged into the 
same hub; 30 wireless cards might be sharing the same radio channel; and a DSL modem uses frequency-domain 
multiplexing, a fundamental concept in electrical engineering, to keep its own digital signals from interfering with the 
analog signals sent down the line when you talk on the telephone.

The fundamental unit of sharing among network devices—the currency, if you will, in which they trade—is 
the packet. A packet is a byte string whose length might range from a few bytes to a few thousand bytes, which is 
transmitted as a single unit between network devices. Although specialized networks do exist, especially in realms 
such as telecommunications, where each individual byte coming down a transmission line might be separately 
routed to a different destination, the more general-purpose technologies used to build digital networks for modern 
computers are all based on the larger unit of the packet.

A packet often has only two properties at the physical level: the byte-string data it carries and an address to which 
it is to be delivered. The address of a physical packet is usually a unique identifier that names one of the other network 
cards attached to the same Ethernet segment or wireless channel as the computer transmitting the packet. The job of 
a network card is to send and receive such packets without making the computer’s operating system care about the 
details of how the network uses wires, voltages, and signals to operate.

What, then, is the Internet Protocol?
The Internet Protocol is a scheme for imposing a uniform system of addresses on all of the Internet-connected 

computers in the entire world and to make it possible for packets to travel from one end of the Internet to the other. 
Ideally, an application like your web browser should be able to connect to a host anywhere without ever knowing 
which maze of network devices each packet is traversing on its journey.

It is rare for a Python program to operate at such a low level that it sees the Internet Protocol itself in action, but it 
is helpful, at least, to know how it works.



 CHAPTER 1  INTRODUCTION TO CLIENT-SERVER NETWORKING

12

IP Addresses
The original version of the Internet Protocol assigns a 4-byte address to every computer connected to the worldwide 
network. Such addresses are usually written as four decimal numbers, separated by periods, which each represent a 
single byte of the address. Each number can therefore range from 0 to 255. So, a traditional four-byte IP address looks 
like this:
 
130.207.244.244
 

Because purely numeric addresses can be difficult for humans to remember, the people using the Internet are 
generally shown hostnames rather than IP addresses. The user can simply type google.com and forget that behind 
the scene this resolves to an address like 74.125.67.103, to which their computer can actually address packets for 
transmission over the Internet.

In the getname.py script, shown in Listing 1-7, you can see a simple Python program that asks the operating 
system—Linux, Mac OS, Windows, or on whatever system the program is running—to resolve the hostname  
www.python.org. The particular network service, called the Domain Name System, which springs into action to 
answer hostname queries is fairly complex, and I will discuss it in greater detail in Chapter 4.

Listing 1-7. Turning a Hostname into an IP Address

#!/usr/bin/env python3
# Foundations of Python Network Programming, Third Edition
# https://github.com/brandon-rhodes/fopnp/blob/m/py3/chapter01/getname.py
 
import socket
 
if __name__ == '__main__':
    hostname = 'www.python.org'
    addr = socket.gethostbyname(hostname)
    print('The IP address of {} is {}'.format(hostname, addr))
 

For now, you just need to remember two things.

First, however fancy an Internet application might look, the actual Internet Protocol always 
uses numeric IP addresses to direct packets toward their destination.

Second, the complicated details of how hostnames are resolved to IP addresses are usually 
handled by the operating system.

Like most details of the operation of the Internet Protocol, your operating system prefers to take care of them 
itself, hiding the details both from you and from your Python code.

Actually, the addressing situation can be a bit more complex these days than the simple 4-byte scheme just 
described. Because the world is beginning to run out of 4-byte IP addresses, an extended address scheme, called IPv6, 
is being deployed that allows absolutely gargantuan 16-byte addresses that should serve humanity’s needs for a long 
time to come. They are written differently from 4-byte IP addresses and look like this:
 
fe80::fcfd:4aff:fecf:ea4e
 

But as long as your code accepts IP addresses or hostnames from the user and passes them directly to a 
networking library for processing, you will probably never need to worry about the distinction between IPv4 and 
IPv6. The operating system on which your Python code is running will know which IP version it is using and should 
interpret addresses accordingly.



 CHAPTER 1  INTRODUCTION TO CLIENT-SERVER NETWORKING

13

Generally, traditional IP addresses can be read from left to right: the first one or two bytes specify an organization, 
and then the next byte often specifies the particular subnet on which the target machine resides. The last byte narrows 
down the address to that specific machine or service. There are also a few special ranges of IP address that have a 
special meaning.

127.*.*.*: IP addresses that begin with the byte 127 are in a special, reserved range that is 
local to the machine on which an application is running. When your web browser or FTP 
client or Python program connects to an address in this range, it is asking to speak to some 
other service or program that is running on the same machine. Most machines make use of 
only one address in this entire range: the IP address 127.0.0.1 is used universally to mean 
“this machine itself that this program is running on” and can often be accessed through the 
hostname localhost.

10.*.*.*, 172.16–31.*.*, 192.168.*.*: These IP ranges are reserved for what are called 
private subnets. The authorities who run the Internet have made an absolute promise: they 
will never hand out IP addresses in any of these three ranges to real companies setting up 
servers or services. Out on the Internet at large, therefore, these addresses are guaranteed 
to have no meaning; they name no host to which you could want to connect. Therefore, 
these addresses are free for you to use on any of your organization’s internal networks where 
you want to be free to assign IP addresses internally, without choosing to make those hosts 
accessible from other places on the Internet.

You are even likely to see some of these private addresses in your own home: your wireless router or DSL modem 
will often assign IP addresses from one of these private ranges to your home computers and laptops and hide all of 
your Internet traffic behind the single “real” IP address that your Internet service provider has allocated for your use.

Routing
Once an application has asked the operating system to send data to a particular IP address, the operating system 
has to decide how to transmit that data using one of the physical networks to which the machine is connected. This 
decision (that is, the choice of where to send each Internet Protocol packet based on the IP address that it names as its 
destination) is called routing.

Most, or perhaps all, of the Python code you write during your career will be running on hosts out at the edge of 
the Internet, with a single network interface that connects them to the rest of the world. For such machines, routing 
becomes a quite simple decision.

If the IP address looks like 127.*.*.*, then the operating system knows that the packet is 
destined for another application running on the same machine. It will not even be submitted 
to a physical network device for transmission but handed directly to another application via 
an internal data copy by the operating system.

If the IP address is in the same subnet as the machine itself, then the destination host can be 
found by simply checking the local Ethernet segment, wireless channel, or whatever the local 
network happens to be, and sending the packet to a locally connected machine.

Otherwise, your machine forwards the packet to a gateway machine that connects your local 
subnet to the rest of the Internet. It will then be up to the gateway machine to decide where to 
send the packet after that.



 CHAPTER 1  INTRODUCTION TO CLIENT-SERVER NETWORKING

14

Of course, routing is only this simple at the edge of the Internet, where the only decisions are whether to keep the 
packet on the local network or to send it winging its way across the rest of the Internet. You can imagine that routing 
decisions are much more complex for the dedicated network devices that form the Internet’s backbone! There, on the 
switches that connect entire continents, elaborate routing tables have to be constructed, consulted, and constantly 
updated in order to know that packets destined for Google go in one direction, packets directed to an Amazon IP 
address go in another, and packets directed to your machine go in yet another. But it is rare for Python applications to 
run on Internet backbone routers, so the simpler routing situation just outlined is nearly always the one you will see  
in action.

I have been a bit vague in the previous paragraphs about how your computer decides whether an IP address 
belongs to a local subnet or whether it should instead be forwarded through a gateway to the rest of the Internet. 
To illustrate the idea of a subnet, all of whose hosts share the same IP address prefix, I have been writing the prefix 
followed by asterisks for the parts of the address that could vary. Of course, the binary logic that runs your operating 
system’s network stack does not actually insert little ASCII asterisks into its routing table! Instead, subnets are 
specified by combining an IP address with a mask that indicates how many of its most significant bits have to match to 
make a host belong to that subnet. If you keep in mind that every byte in an IP address represents eight bits of binary 
data, then you will be able to read subnet numbers easily. They look like this:

127.0.0.0/8: This pattern, which describes the IP address range discussed previously and is 
reserved for the local host, specifies that the first 8 bits (1 byte) must match the number 127 
and that the remaining 24 bits (3 bytes) can have any value they want.

192.168.0.0/16: This pattern will match any IP address that belongs in the private 192.168 
range because the first 16 bits must match perfectly. The last 16 bits of the 32-bit address are 
allowed to have whatever value they want.

192.168.5.0/24: Here you have a specification for one particular individual subnet. This is 
probably the most common subnet mask on the entire Internet. The first three bytes of the 
address are completely specified, and they have to match for an IP address to fall into this 
range. Only the last byte (the last eight bits) is allowed to vary between machines in this range. 
This leaves 256 unique addresses. Typically, the .0 address is used as the name of the subnet, 
and the .255 address is used as the destination for a “broadcast packet” that addresses all of 
the hosts on the subnet (as you will see in the next chapter), which leaves 254 addresses free 
to be assigned to computers. The address .1 is often used for the gateway that connects the 
subnet to the rest of the Internet, but some companies and schools choose to use another 
number for their gateways instead.

In nearly all cases, your Python code will simply rely on its host operating system to make packet routing choices 
correctly—just as it relies upon the operating system to resolve hostnames to IP addresses in the first place.

Packet Fragmentation
One last Internet Protocol concept that deserves mention is packet fragmentation. While it is supposed to be an 
obscure detail that is successfully hidden from your program by the cleverness of your operating system’s network 
stack, it has caused enough problems over the Internet’s history that it deserves at least a brief mention here.



 CHAPTER 1  INTRODUCTION TO CLIENT-SERVER NETWORKING

15

Fragmentation is necessary because the Internet Protocol supports very large packets—they can be up to 64KB 
in length—but the actual network devices from which IP networks are built usually support much smaller packet 
sizes. Ethernet networks, for example, support only 1,500-byte packets. Internet packets therefore include a “don’t 
fragment” (DF) flag with which the sender can choose what they want to happen if the packet proves too big to fit 
across one of the physical networks that lies between the source computer and the destination:

If the DF flag is unset, then fragmentation is permitted, and when the packet reaches the 
threshold of the network onto which it cannot fit, the gateway can split it into smaller packets 
and mark them to be reassembled at the other end.

If the DF flag is set, then fragmentation is prohibited, and if the packet cannot fit, then it will 
be discarded and an error message will be sent back—in a special signaling packet called an 
Internet Control Message Protocol (ICMP) packet—to the machine that sent the packet so that 
it can try splitting the message into smaller pieces and re-sending it.

Your Python programs will usually have no control over the DF flag; instead, it is set by the operating system. 
Roughly, the logic that the system will usually use is this: If you are having a UDP conversation (see Chapter 2) that 
consists of individual datagrams winging their way across the Internet, then the operating system will leave DF 
unset so that each datagram reaches the destination in however many pieces are needed; but if you are having a TCP 
conversation (see Chapter 3) whose long stream of data might be hundreds or thousands of packets long, then the 
operating system will set the DF flag so that it can choose exactly the right packet size to let the conversation flow 
smoothly, without its packets constantly being fragmented en route, which would make the conversation slightly less 
efficient.

The biggest packet that an Internet subnet can accept is called its maximum transmission unit (MTU), and there 
used to be a big problem with MTU processing that caused problems for lots of Internet users. In the 1990s, Internet 
service providers (most notably phone companies offering DSL links) started using PPPoE, a protocol that puts IP 
packets inside a capsule that leaves them room for only 1,492 bytes instead of the full 1,500 bytes usually permitted 
across Ethernet. Many Internet sites were unprepared for this because they used 1,500-byte packets by default and 
had blocked all ICMP packets as a misguided security measure. As a consequence, their servers could never receive 
the ICMP errors telling them that their large, 1,500-byte “don’t fragment” packets were reaching customers’ DSL links 
and were unable to fit across them.

The maddening symptom of this situation was that small files or web pages could be viewed without a problem, 
and interactive protocols such as Telnet and SSH would work since both of these activities tend to send small 
packets that are less than 1,492 bytes long anyway. But once the customer tried downloading a large file or once a 
Telnet or SSH command disgorged several screens full of output at once, the connection would freeze and become 
unresponsive.

Today this problem is rarely encountered, but it illustrates how a low-level IP feature can generate user-visible 
symptoms and, therefore, why it is good to keep all of the features of IP in mind when writing and debugging network 
programs.

Learning More About IP
In the next chapters, you will step up to the protocol layers above IP and see how your Python programs can have 
different kinds of network conversations by using the different services built on top of the Internet Protocol. But what 
if you have been intrigued by the preceding outline of how IP works and want to learn more?

The official resources that describe the Internet Protocol are the requests for comment (RFCs) published by 
the IETF that describe exactly how the protocol works. They are carefully written and, when combined with a strong 
cup of coffee and a few hours of free reading time, will let you in on every single detail of how the Internet Protocols 
operate. Here, for example, is the RFC that defines the Internet Protocol itself:
 
http://tools.ietf.org/html/rfc791
 



 CHAPTER 1  INTRODUCTION TO CLIENT-SERVER NETWORKING

16

You can also find RFCs referenced on general resources such as Wikipedia, and RFCs will often cite other RFCs 
that describe further details of a protocol or addressing scheme.

If you want to learn everything about the Internet Protocol and the other protocols that run on top of it, you might 
be interested in acquiring the venerable text, TCP/IP Illustrated, Volume 1: The Protocols (2nd Edition) by Kevin R. Fall 
and W. Richard Stevens (Addison-Wesley Professional, 2011). It covers, in fine detail, all of the protocol operations at 
which this book will only have the space to gesture. There are also other good books on networking in general, and 
that might help with network configuration in particular if setting up IP networks and routing is something you do 
either at work or even just at home to get your computers on the Internet.

Summary
All network services except the most rudimentary ones are implemented atop some other, more basic network 
function.

You explored such a “stack” in the opening sections of this chapter. The TCP/IP protocol (to be covered in 
Chapter 3) supports the mere transmission of byte strings between a client and server. The HTTP protocol (see 
Chapter 9) describes how such a connection can be used for a client to request a particular document and for the 
server to respond by providing it. The World Wide Web (Chapter 11) encodes the instructions for retrieving an 
HTTP-hosted document into a special address called a URL, and the standard JSON data format is popular for when 
the document returned by the server needs to present structured data to the client. And atop this entire edifice, 
Google offers a geocoding service that lets programmers build a URL to which Google replies with a JSON document 
describing a geographic location.

Whenever textual information is to be transmitted on the network—or, for that matter, saved to persistent byte-
oriented storage such as a disk—the characters need to be encoded as bytes. There are several widely used schemes 
for representing characters as bytes. The most common on the modern Internet are the simple and limited ASCII 
encoding and the powerful and general Unicode system, especially its particular encoding known as UTF-8. Python 
byte strings can be converted to real characters using their decode() method, and normal character strings can be 
changed back through their encode() method. Python 3 tries never to convert bytes to strings automatically—an 
operation that would require it simply to guess at the encoding you intend—and so Python 3 code will often feature 
more calls to decode() and encode() than might have been your practice under Python 2.

For the IP network to transmit packets on an application’s behalf, it is necessary that network administrators, 
appliance vendors, and operating system programmers have conspired together to assign IP addresses to individual 
machines, establish routing tables at both the machine and the router level, and configure the Domain Name System 
(Chapter 4) to associate IP addresses with user-visible names. Python programmers should know that each IP packet 
winds its own way across the network toward the destination and that a packet might be fragmented if it is too large to 
fit across one of the “hops” between routers along its path.

There are two basic ways to use IP from most applications. They are either to use each packet as a stand-alone 
message or to ask for a stream of data that gets split into packets automatically. These protocols are named UDP and 
TCP, and they are the subjects to which this book turns in Chapter 2 and Chapter 3.



 
sample content of Foundations of Python Network Programming

click Du temps qu'on existait
read online Sigmund y Anna Freud: Correspondencia 1904-1938
read online Computer Graphics: Principles and Practice (3rd Edition)
download online Revolutionary Road
The Deluxe Transitive Vampire: The Ultimate Handbook of Grammar for the Innocent, the
Eager, and the Doomed book

http://econtact.webschaefer.com/?books/Histoire-de-la-France-contemporaine--t--I--L-Empire-
des-Fran--ais---1799-1815-.pdf
http://fortune-touko.com/library/Conquerors--Pride--The-Conquerors-Saga--Book-1-.pdf
http://cambridgebrass.com/?freebooks/Computer-Graphics--Principles-and-Practice--3rd-
Edition-.pdf
http://cavalldecartro.highlandagency.es/library/Revolutionary-Road.pdf
http://econtact.webschaefer.com/?books/Great-Soul--Mahatma-Gandhi-and-His-Struggle-with-
India.pdf

Powered by TCPDF (www.tcpdf.org)

http://econtact.webschaefer.com/?books/Histoire-de-la-France-contemporaine--t--I--L-Empire-des-Fran--ais---1799-1815-.pdf
http://fortune-touko.com/library/Conquerors--Pride--The-Conquerors-Saga--Book-1-.pdf
http://cambridgebrass.com/?freebooks/Computer-Graphics--Principles-and-Practice--3rd-Edition-.pdf
http://cavalldecartro.highlandagency.es/library/Revolutionary-Road.pdf
http://econtact.webschaefer.com/?books/Great-Soul--Mahatma-Gandhi-and-His-Struggle-with-India.pdf
http://econtact.webschaefer.com/?books/Great-Soul--Mahatma-Gandhi-and-His-Struggle-with-India.pdf
http://econtact.webschaefer.com/?books/Histoire-de-la-France-contemporaine--t--I--L-Empire-des-Fran--ais---1799-1815-.pdf
http://econtact.webschaefer.com/?books/Histoire-de-la-France-contemporaine--t--I--L-Empire-des-Fran--ais---1799-1815-.pdf
http://fortune-touko.com/library/Conquerors--Pride--The-Conquerors-Saga--Book-1-.pdf
http://cambridgebrass.com/?freebooks/Computer-Graphics--Principles-and-Practice--3rd-Edition-.pdf
http://cambridgebrass.com/?freebooks/Computer-Graphics--Principles-and-Practice--3rd-Edition-.pdf
http://cavalldecartro.highlandagency.es/library/Revolutionary-Road.pdf
http://econtact.webschaefer.com/?books/Great-Soul--Mahatma-Gandhi-and-His-Struggle-with-India.pdf
http://econtact.webschaefer.com/?books/Great-Soul--Mahatma-Gandhi-and-His-Struggle-with-India.pdf
http://www.tcpdf.org

